Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA.
Nat Cell Biol. 2011 Jul 24;13(8):952-7. doi: 10.1038/ncb2291.
Cells must make appropriate fate decisions within a complex and dynamic environment. In vitro studies indicate that the cytoskeleton acts as an integrative platform for this environmental input. External signals regulate cytoskeletal dynamics and the cytoskeleton reciprocally modulates signal transduction. However, in vivo studies linking cytoskeleton/signalling interactions to embryonic cell fate specification remain limited. Here we show that the cytoskeleton modulates heart progenitor cell fate. Our studies focus on differential induction of heart fate in the basal chordate Ciona intestinalis. We have found that differential induction does not simply reflect differential exposure to the inductive signal. Instead, pre-cardiac cells employ polarized, invasive protrusions to localize their response to an ungraded signal. Through targeted manipulation of the cytoskeletal regulator CDC42, we are able to depolarize protrusive activity and generate uniform heart progenitor fate specification. Furthermore, we are able to restore differential induction by repolarizing protrusive activity. These findings illustrate how bi-directional interactions between intercellular signalling and the cytoskeleton can influence embryonic development. In particular, these studies highlight the potential for dynamic cytoskeletal changes to refine cell fate specification in response to crude signal gradients.
细胞必须在复杂和动态的环境中做出适当的命运决定。体外研究表明,细胞骨架作为环境输入的整合平台。外部信号调节细胞骨架动力学,细胞骨架反过来调节信号转导。然而,将细胞骨架/信号相互作用与胚胎细胞命运特化联系起来的体内研究仍然有限。在这里,我们展示了细胞骨架调节心脏祖细胞命运。我们的研究重点是在基础脊索动物海鞘中诱导心脏命运的差异。我们发现,诱导的差异并不仅仅反映了对诱导信号的差异暴露。相反,心脏前体细胞采用极化的、侵袭性的突起将其对非分级信号的反应定位。通过对细胞骨架调节剂 CDC42 的靶向操作,我们能够使突起活动去极化并产生均匀的心脏祖细胞命运特化。此外,我们能够通过重新极化突起活动来恢复诱导的差异。这些发现说明了细胞间信号和细胞骨架之间的双向相互作用如何影响胚胎发育。特别是,这些研究强调了动态细胞骨架变化在响应粗糙信号梯度精细特化细胞命运方面的潜力。