National Center for Computational Toxicology, Offce of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
Environ Health Perspect. 2011 Nov;119(11):1539-46. doi: 10.1289/ehp.1103750. Epub 2011 Jul 25.
Little justification is generally provided for selection of in vitro assay testing concentrations for engineered nanomaterials (ENMs). Selection of concentration levels for hazard evaluation based on real-world exposure scenarios is desirable.
Our goal was to use estimates of lung deposition after occupational exposure to nanomaterials to recommend in vitro testing concentrations for the U.S. Environmental Protection Agency's ToxCast™ program. Here, we provide testing concentrations for carbon nanotubes (CNTs) and titanium dioxide (TiO2) and silver (Ag) nanoparticles (NPs).
We reviewed published ENM concentrations measured in air in manufacturing and R&D (research and development) laboratories to identify input levels for estimating ENM mass retained in the human lung using the multiple-path particle dosimetry (MPPD) model. Model input parameters were individually varied to estimate alveolar mass retained for different particle sizes (5-1,000 nm), aerosol concentrations (0.1 and 1 mg/m3), aspect ratios (2, 4, 10, and 167), and exposure durations (24 hr and a working lifetime). The calculated lung surface concentrations were then converted to in vitro solution concentrations.
Modeled alveolar mass retained after 24 hr is most affected by activity level and aerosol concentration. Alveolar retention for Ag and TiO2 NPs and CNTs for a working-lifetime (45 years) exposure duration is similar to high-end concentrations (~ 30-400 μg/mL) typical of in vitro testing reported in the literature.
Analyses performed are generally applicable for providing ENM testing concentrations for in vitro hazard screening studies, although further research is needed to improve the approach. Understanding the relationship between potential real-world exposures and in vitro test concentrations will facilitate interpretation of toxicological results.
对于工程纳米材料(ENMs),体外检测试验浓度的选择通常没有充分的依据。基于实际暴露情况选择危害评估的浓度水平是理想的。
我们的目标是使用职业暴露于纳米材料后的肺部沉积估计值,为美国环保署的 ToxCast™ 计划推荐体外检测浓度。在这里,我们提供了用于碳纳米管(CNTs)和二氧化钛(TiO2)以及银(Ag)纳米颗粒(NPs)的检测浓度。
我们查阅了已发表的制造和研发(R&D)实验室中空气中 ENM 浓度的文献,以确定使用多路径颗粒剂量学(MPPD)模型估算人类肺部中保留的 ENM 质量的输入水平。单独改变模型输入参数,以估算不同粒径(5-1000nm)、气溶胶浓度(0.1 和 1mg/m3)、纵横比(2、4、10 和 167)和暴露时间(24 小时和工作寿命)下的肺泡保留质量。然后将计算出的肺表面浓度转换为体外溶液浓度。
24 小时后肺泡保留的模型化质量主要受到活动水平和气溶胶浓度的影响。对于工作寿命(45 年)暴露时间,Ag 和 TiO2 NPs 以及 CNTs 的肺泡保留量与文献中报道的体外检测中典型的高浓度(~30-400μg/mL)相似。
所进行的分析通常适用于提供体外危害筛选研究的 ENM 检测浓度,尽管需要进一步研究来改进该方法。了解潜在的实际暴露与体外测试浓度之间的关系将有助于解释毒理学结果。