Suppr超能文献

社交网络中的社区结构:在流行病学建模中的应用。

Community structure in social networks: applications for epidemiological modelling.

机构信息

Computer Laboratory, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS One. 2011;6(7):e22220. doi: 10.1371/journal.pone.0022220. Epub 2011 Jul 18.

Abstract

During an infectious disease outbreak people will often change their behaviour to reduce their risk of infection. Furthermore, in a given population, the level of perceived risk of infection will vary greatly amongst individuals. The difference in perception could be due to a variety of factors including varying levels of information regarding the pathogen, quality of local healthcare, availability of preventative measures, etc. In this work we argue that we can split a social network, representing a population, into interacting communities with varying levels of awareness of the disease. We construct a theoretical population and study which such communities suffer most of the burden of the disease and how their awareness affects the spread of infection. We aim to gain a better understanding of the effects that community-structured networks and variations in awareness, or risk perception, have on the disease dynamics and to promote more community-resolved modelling in epidemiology.

摘要

在传染病爆发期间,人们通常会改变行为以降低感染风险。此外,在特定人群中,个体对感染风险的感知程度会有很大差异。这种感知上的差异可能是由于多种因素造成的,包括对病原体的信息程度不同、当地医疗保健质量、预防措施的可及性等。在这项工作中,我们认为我们可以将代表人群的社交网络划分为具有不同疾病意识水平的相互作用的社区。我们构建了一个理论人群,并研究了哪些社区承受着疾病的最大负担,以及他们的意识如何影响感染的传播。我们的目标是更好地了解社区结构网络和意识或风险感知的变化对疾病动态的影响,并促进在流行病学中更多地进行社区解析建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3019/3138783/a46b10aa9a6c/pone.0022220.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验