Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California, USA.
Clin Cancer Res. 2011 Sep 1;17(17):5695-704. doi: 10.1158/1078-0432.CCR-10-3420. Epub 2011 Jul 26.
The presence of tumor-associated macrophages (TAM) in breast cancer correlates strongly with poor outcome. The purpose of this study was to develop a clinically applicable, noninvasive diagnostic assay for selective targeting and visualization of TAMs in breast cancer, based on magnetic resonanceI and clinically applicable iron oxide nanoparticles.
F4/80-negative mammary carcinoma cells and F4/80-positive TAMs were incubated with iron oxide nanoparticles and were compared with respect to magnetic resonance signal changes and iron uptake. MMTV-PyMT transgenic mice harboring mammary carcinomas underwent nanoparticle-enhanced magnetic resonance imaging (MRI) up to 1 hour and 24 hours after injection. The tumor enhancement on MRIs was correlated with the presence and location of TAMs and nanoparticles by confocal microscopy.
In vitro studies revealed that iron oxide nanoparticles are preferentially phagocytosed by TAMs but not by malignant tumor cells. In vivo, all tumors showed an initial contrast agent perfusion on immediate postcontrast MRIs with gradual transendothelial leakage into the tumor interstitium. Twenty-four hours after injection, all tumors showed a persistent signal decline on MRIs. TAM depletion via αCSF1 monoclonal antibodies led to significant inhibition of tumor nanoparticle enhancement. Detection of iron using 3,3'-diaminobenzidine-enhanced Prussian Blue staining, combined with immunodetection of CD68, localized iron oxide nanoparticles to TAMs, showing that the signal effects on delayed MRIs were largely due to TAM-mediated uptake of contrast agent.
These data indicate that tumor enhancement with clinically applicable iron oxide nanoparticles may serve as a new biomarker for long-term prognosis, related treatment decisions, and the evaluation of new immune-targeted therapies.
乳腺癌中肿瘤相关巨噬细胞(TAM)的存在与不良预后密切相关。本研究旨在开发一种基于临床适用的氧化铁纳米颗粒的、用于选择性靶向和可视化乳腺癌 TAMs 的临床适用的非侵入性诊断检测方法。
F4/80 阴性乳腺癌细胞和 F4/80 阳性 TAMs 与氧化铁纳米颗粒孵育,并比较其磁共振信号变化和铁摄取。携带有乳腺癌的 MMTV-PyMT 转基因小鼠在注射后 1 小时和 24 小时进行纳米颗粒增强磁共振成像(MRI)。通过共聚焦显微镜将 MRI 上的肿瘤增强与 TAMs 和纳米颗粒的存在和位置相关联。
体外研究表明,氧化铁纳米颗粒优先被 TAMs 吞噬,而不是恶性肿瘤细胞。在体内,所有肿瘤在立即注射对比剂后的 MRI 上均显示出初始的对比剂灌注,随后逐渐发生跨内皮渗漏到肿瘤间质中。注射后 24 小时,所有肿瘤在 MRI 上均显示出持续的信号下降。通过 αCSF1 单克隆抗体耗尽 TAMs 会导致肿瘤纳米颗粒增强显著抑制。使用 3,3'-二氨基联苯胺增强普鲁士蓝染色检测铁,并结合 CD68 的免疫检测,将氧化铁纳米颗粒定位到 TAMs 上,表明延迟 MRI 上的信号效应主要归因于 TAM 介导的对比剂摄取。
这些数据表明,临床适用的氧化铁纳米颗粒的肿瘤增强可能成为长期预后、相关治疗决策以及新的免疫靶向治疗评估的新生物标志物。