Suppr超能文献

石墨烯作为间隔物,通过层层组装电化学功能化的纳米结构,用于分子生物电子器件。

Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.

机构信息

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Langmuir. 2011 Sep 6;27(17):11180-6. doi: 10.1021/la202018r. Epub 2011 Aug 5.

Abstract

This study demonstrates the capability of graphene as a spacer to form electrochemically functionalized multilayered nanostructures onto electrodes in a controllable manner through layer-by-layer (LBL) chemistry. Methylene green (MG) and positively charged methylimidazolium-functionalized multiwalled carbon nanotubes (MWNTs) were used as examples of electroactive species and electrochemically useful components for the assembly, respectively. By using graphene as the spacer, the multilayered nanostructures of graphene/MG and graphene/MWNT could be readily formed onto electrodes with the LBL method on the basis of the electrostatic and/or π-π interaction(s) between graphene and the electrochemically useful components. Scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV) were used to characterize the assembly processes, and the results revealed that nanostructure assembly was uniform and effective with graphene as the spacer. Electrochemical studies demonstrate that the assembled nanostructures possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH and could thus be used as electronic transducers for bioelectronic devices. This potential was further demonstrated by using an alcohol dehydrogenase-based electrochemical biosensor and glucose dehydrogenase-based glucose/O(2) biofuel cell as typical examples. This study offers a simple route to the controllable formation of graphene-based electrochemically functionalized nanostructures that can be used for the development of molecular bioelectronic devices such as biosensors and biofuel cells.

摘要

这项研究展示了石墨烯作为一种间隔物的能力,通过层层(LBL)化学以可控的方式将电化学功能化的多层纳米结构形成到电极上。亚甲蓝(MG)和带正电荷的甲基咪唑功能化多壁碳纳米管(MWNTs)分别被用作电化学活性物质和用于组装的电化学有用组件的示例。通过使用石墨烯作为间隔物,可以基于石墨烯和电化学有用组件之间的静电和/或π-π相互作用,使用 LBL 方法将石墨烯/MG 和石墨烯/MWNT 的多层纳米结构轻易地形成到电极上。扫描电子显微镜(SEM)、紫外-可见光谱(UV-vis)和循环伏安法(CV)用于表征组装过程,结果表明,使用石墨烯作为间隔物,组装过程均匀且有效。电化学研究表明,组装的纳米结构具有出色的电化学性质和对 NADH 氧化的电催化活性,因此可用于生物电子设备的电子传感器。通过使用基于醇脱氢酶的电化学生物传感器和基于葡萄糖脱氢酶的葡萄糖/O2 生物燃料电池作为典型示例,进一步证明了这种潜力。本研究提供了一种简单的方法来可控地形成基于石墨烯的电化学功能化纳米结构,可用于开发分子生物电子设备,如生物传感器和生物燃料电池。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验