Suppr超能文献

皮微微升每像素水平下细胞内蛋白质和核酸的深紫外成像。

Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel.

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

出版信息

Cytometry A. 2011 Nov;79(11):920-32. doi: 10.1002/cyto.a.21111. Epub 2011 Jul 27.

Abstract

By using imaging spectrophotometry with paired images in the 200- to 280-nm wavelength range, we have directly mapped intracellular nucleic acid and protein distributions across a population of Chinese hamster ovary (CHO-K1) cells. A broadband 100× objective with a numerical aperture of 1.2 NA (glycerin immersion) and a novel laser-induced-plasma point source generated high-contrast images with short (∼100 ms) exposures and a lateral resolution nearing 200 nm that easily resolves internal organelles. In a population of 420 CHO-K1 cells and 477 nuclei, we found a G1 whole-cell nucleic acid peak at 26.6 pg, a nuclear-isolated total nucleic acid peak at 11.4 pg, and, as inferred by RNase treatment, a G1 total DNA mass of 7.4 pg. At the G1 peak, we found a whole-cell protein mass of 95.6 pg, and a nuclear-isolated protein mass of 39.3 pg. An algorithm for protein quantification that senses peptide-bond (220-nm) absorbance was found to have a higher signal-to-noise ratio and to provide more reliable nucleic acid and protein determinations when compared to more classical 280/260-nm algorithms when used for intracellular mass mapping. Using simultaneous imaging with common nuclear stains (Hoechst 33342, Syto-14, and Sytox Orange), we have compared staining patterns to deep-UV images of condensed chromatin and have confirmed bias of these common nuclear stains related to nuclear packaging. The approach allows absolute mass measurements with no special sample preparation or staining. It can be used in conjunction with normal fluorescence microscopy and with relatively modest modification of the microscope.

摘要

通过使用 200-280nm 波长范围内的配对图像进行成像分光光度法,我们直接绘制了中国仓鼠卵巢(CHO-K1)细胞群体中细胞内核酸和蛋白质的分布。宽带 100×物镜,数值孔径为 1.2 NA(甘油浸液)和新颖的激光诱导等离子体点源生成高对比度图像,曝光时间短(约 100ms),横向分辨率接近 200nm,可轻松分辨内部细胞器。在 420 个 CHO-K1 细胞和 477 个核中,我们发现 G1 全细胞核酸峰为 26.6pg,核分离总核酸峰为 11.4pg,并且通过 RNase 处理推断,G1 总 DNA 质量为 7.4pg。在 G1 峰时,我们发现全细胞蛋白质量为 95.6pg,核分离蛋白质量为 39.3pg。与更经典的 280/260nm 算法相比,用于细胞内质量映射时,我们发现一种用于蛋白质定量的算法,该算法可以感应肽键(220nm)吸光度,具有更高的信噪比,并提供更可靠的核酸和蛋白质测定结果。使用与常见核染料(Hoechst 33342、Syto-14 和 Sytox Orange)同时成像,我们将染色模式与浓缩染色质的深紫外图像进行了比较,并证实了这些常见核染料与核包装相关的偏倚。该方法允许进行无特殊样品制备或染色的绝对质量测量。它可以与普通荧光显微镜结合使用,并对显微镜进行相对较小的修改。

相似文献

1
Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel.
Cytometry A. 2011 Nov;79(11):920-32. doi: 10.1002/cyto.a.21111. Epub 2011 Jul 27.
3
Application of pyronin Y(G) in cytochemistry of nucleic acids.
Cytometry. 1987 Mar;8(2):138-45. doi: 10.1002/cyto.990080206.
4
Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping.
Cytometry A. 2013 Jun;83(6):540-51. doi: 10.1002/cyto.a.22277. Epub 2013 Mar 15.
7
8
Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy.
Nat Methods. 2007 Jul;4(7):567-9. doi: 10.1038/nmeth1053. Epub 2007 Jun 3.
10
Analyzing Cell Death by Nuclear Staining with Hoechst 33342.
Cold Spring Harb Protoc. 2016 Sep 1;2016(9):2016/9/pdb.prot087205. doi: 10.1101/pdb.prot087205.

引用本文的文献

1
Label-free deep UV microscopy in oral cytology: a step towards stain-free diagnostics.
Biomed Opt Express. 2025 Jul 28;16(8):3415-3423. doi: 10.1364/BOE.569553. eCollection 2025 Aug 1.
2
Radiation-induced rescue effect on human breast carcinoma cells is regulated by macrophages.
Biochem Biophys Rep. 2025 Feb 8;41:101936. doi: 10.1016/j.bbrep.2025.101936. eCollection 2025 Mar.
3
Rapid, Point-of-Care Bone Marrow Aspirate Adequacy Assessment Via Deep Ultraviolet Microscopy.
Lab Invest. 2025 May;105(5):104102. doi: 10.1016/j.labinv.2025.104102. Epub 2025 Feb 3.
4
Quantifying UV-induced photodamage for longitudinal live-cell imaging applications of deep-UV microscopy.
Biomed Opt Express. 2024 Dec 19;16(1):208-221. doi: 10.1364/BOE.544778. eCollection 2025 Jan 1.
5
Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization.
APL Photonics. 2024 Sep 1;9(9):090801. doi: 10.1063/5.0227038. Epub 2024 Sep 16.
6
LVING reveals the intracellular structure of cell growth.
Sci Rep. 2024 Apr 12;14(1):8544. doi: 10.1038/s41598-024-58992-x.
7
Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.
BME Front. 2022 Jul 1;2022:9853606. doi: 10.34133/2022/9853606. eCollection 2022.
8
Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry.
Anal Bioanal Chem. 2022 Jun;414(15):4457-4470. doi: 10.1007/s00216-022-03910-1. Epub 2022 Mar 23.
9
Label-free automated neutropenia detection and grading using deep-ultraviolet microscopy.
Biomed Opt Express. 2021 Sep 9;12(10):6115-6128. doi: 10.1364/BOE.434465. eCollection 2021 Oct 1.
10
Hemoglobin quantification in red blood cells via dry mass mapping based on UV absorption.
J Biomed Opt. 2021 Aug;26(8). doi: 10.1117/1.JBO.26.8.086501.

本文引用的文献

1
Quantitation of DNA and RNA with absorption and fluorescence spectroscopy.
Curr Protoc Mol Biol. 2011 Jan;Appendix 3:3D. doi: 10.1002/0471142727.mba03ds93.
2
Analysis of cellular DNA content by flow and laser scanning cytometry.
Adv Exp Med Biol. 2010;676:137-47. doi: 10.1007/978-1-4419-6199-0_9.
4
Nuclear genome size: are we getting closer?
Cytometry A. 2010 Jul;77(7):635-42. doi: 10.1002/cyto.a.20915.
5
Factors affecting quantification of total DNA by UV spectroscopy and PicoGreen fluorescence.
J Agric Food Chem. 2009 Aug 26;57(16):7221-6. doi: 10.1021/jf901165h.
6
Revisiting absorbance at 230nm as a protein unfolding probe.
Anal Biochem. 2009 Jun 15;389(2):165-70. doi: 10.1016/j.ab.2009.03.028. Epub 2009 Mar 24.
7
Absolute absorption intensities of alkylbenzenes in the 2250-1700 A region.
Chem Rev. 1947 Oct;41(2):301-10. doi: 10.1021/cr60129a009.
8
Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids.
Biophys Chem. 2008 Mar;133(1-3):66-70. doi: 10.1016/j.bpc.2007.12.004. Epub 2007 Dec 23.
9
Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy.
Nat Methods. 2007 Jul;4(7):567-9. doi: 10.1038/nmeth1053. Epub 2007 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验