Gorti Viswanath, McCubbins Kaitlyn, Houston Daniel, Silva Trenkle Aaron D, Holberton Abigail, Serafini Caroline E, Wood Levi, Kwong Gabriel, Robles Francisco E
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
Biomed Opt Express. 2024 Dec 19;16(1):208-221. doi: 10.1364/BOE.544778. eCollection 2025 Jan 1.
Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies. Here, we quantify UV phototoxicity with several cell types at notable UV wavelengths. We find that the fluence required for cell death via UV phototoxicity with continuous UV exposure varies with cell type and wavelength from ∼0.5µJ/µm to 2µJ/µm, but is independent of typical illumination power/radiant flux of UV microscopy (e.g., 0.1-20 nW/µm). We also show results from fractionation studies that reveal cell repair following UV exposure, which increases the tolerance to UV radiation by a factor of 2 or more, depending on the fractionation paradigm. Results further show that UV tolerance exceeds ANSI guidelines for maximum permissible exposure. Finally, we calculate imaging limits for a typical application of UV microscopy, such as hematology analysis. Together, this work provides UV fluence thresholds that can serve as guidelines for nondestructive, longitudinal, and dynamic deep-UV microscopy experiments.
深紫外显微镜通过利用生物分子在紫外光谱中的吸收特性,实现高分辨率、无标记的分子成像。紫外成像硬件的最新进展重新激发了人们对该技术在定量活细胞成像应用中的兴趣。然而,紫外线诱导的光损伤仍是纵向动态成像研究中需要关注的问题。在此,我们在显著的紫外波长下,对几种细胞类型的紫外线光毒性进行了量化。我们发现,连续紫外线照射下,通过紫外线光毒性导致细胞死亡所需的能量通量随细胞类型和波长的变化而变化,范围约为0.5µJ/µm至2µJ/µm,但与紫外显微镜的典型照明功率/辐射通量(例如0.1 - 20 nW/µm)无关。我们还展示了分级研究的结果,这些结果揭示了紫外线照射后细胞的修复情况,根据分级模式,细胞对紫外线辐射的耐受性可提高2倍或更多。结果还表明,紫外线耐受性超过了美国国家标准学会(ANSI)的最大允许暴露指南。最后,我们计算了紫外显微镜典型应用(如血液学分析)的成像极限。总之,这项工作提供了紫外线能量通量阈值,可作为无损、纵向和动态深紫外显微镜实验的指南。