Institute for Biophysics, Johannes Kepler University, A-4040 Linz, Austria.
ACS Nano. 2011 Sep 27;5(9):7048-54. doi: 10.1021/nn201705p. Epub 2011 Aug 9.
Single-molecule characterization is essential for ascertaining the structural and functional properties of bottom-up DNA nanostructures. Here we enlist three atomic force microscopy (AFM) techniques to examine tetrahedron-shaped DNA nanostructures that are functionally enhanced with small chemical tags. In line with their application for biomolecule immobilization in biosensing and biophysics, the tetrahedra feature three disulfide-modified vertices to achieve directed attachment to gold surfaces. The remaining corner carries a single bioligand that can capture and present individual cargo biomolecules at defined lateral nanoscale spacing. High-resolution AFM topographic imaging confirmed the directional surface attachment as well as the highly effective binding of individual receptor molecules to the exposed bioligands. Insight into the binding behavior at the single-molecule level was gained using molecular recognition force spectroscopy using an AFM cantilever tip with a tethered molecular receptor. Finally, simultaneous topographic and recognition imaging demonstrated the specific receptor-ligand interactions on individual tetrahedra. In summary, AFM characterization verified that the rationally designed DNA nanostructures feature characteristics to serve as valuable immobilization agents in biosensing, biophysics, and cell biology.
单分子特性分析对于确定自下而上的 DNA 纳米结构的结构和功能特性至关重要。在这里,我们列出了三种原子力显微镜(AFM)技术,用于检查功能增强的带有小化学标记的四面体 DNA 纳米结构。为了在生物传感和生物物理学中实现生物分子的固定,四面体具有三个二硫键修饰的顶点,以实现定向附着到金表面。剩余的角带有一个单生物配体,可在定义的横向纳米级间距处捕获和呈现单个货物生物分子。高分辨率 AFM 形貌成像证实了定向表面附着以及单个受体分子与暴露的生物配体的高效结合。使用带有连接的分子受体的 AFM 悬臂尖端进行分子识别力光谱学,深入了解了单分子水平的结合行为。最后,同时进行形貌和识别成像,证明了单个四面体上的特定受体-配体相互作用。总之,AFM 特性分析验证了这些合理设计的 DNA 纳米结构具有作为生物传感、生物物理学和细胞生物学中有用的固定化剂的特性。