Suppr超能文献

使用高速原子力显微镜对 DNA 折纸纳米结构中生物分子的动态运动进行单分子成像。

Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.

机构信息

Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

Acc Chem Res. 2014 Jun 17;47(6):1645-53. doi: 10.1021/ar400299m. Epub 2014 Mar 6.

Abstract

CONSPECTUS

Direct imaging of molecular motions is one of the most fundamental issues for elucidating the physical properties of individual molecules and their reaction mechanisms. Atomic force microscopy (AFM) enables direct molecular imaging, especially for biomolecules in the physiological environment. Because AFM can visualize the molecules at nanometer-scale spatial resolution, a versatile observation scaffold is needed for the precise imaging of molecule interactions in the reactions. The emergence of DNA origami technology allows the precise placement of desired molecules in the designed nanostructures and enables molecules to be detected at the single-molecule level. In our study, the DNA origami system was applied to visualize the detailed motions of target molecules in reactions using high-speed AFM (HS-AFM), which enables the analysis of dynamic motions of biomolecules in a subsecond time resolution. In this system, biochemical properties such as the placement of various double-stranded DNAs (dsDNAs) containing unrestricted DNA sequences, modified nucleosides, and chemical functions can be incorporated. From a physical point of view, the tension and rotation of dsDNAs can be controlled by placement into the DNA nanostructures. From a topological point of view, the orientations of dsDNAs and various shapes of dsDNAs including Holliday junctions can be incorporated for studies on reaction mechanisms. In this Account, we describe the combination of the DNA origami system and HS-AFM for imaging various biochemical reactions including enzymatic reactions and DNA structural changes. To observe the behaviors and reactions of DNA methyltransferase and DNA repair enzymes, the substrate dsDNAs were incorporated into the cavity of the DNA frame, and the enzymes that bound to the target dsDNA were observed using HS-AFM. DNA recombination was also observed using the recombination substrates and Holliday junction intermediates placed in the DNA frame, and the direction of the reactions was controlled by introducing structural stress to the substrates. In addition, the movement of RNA polymerase and its reaction were visualized using a template dsDNA attached to the origami structure. To observe DNA structural changes, G-quadruplex formation and disruption, the switching behaviors of photoresponsive oligonucleotides, and B-Z transition were visualized using the DNA frame observation system. For the formation and disruption of G-quadruplex and double-helix DNA, the two dsDNA chains incorporated into the DNA frame could amplify the small structural change to the global structural change, which enabled the visualization of their association and dissociation by HS-AFM. The dynamic motion of the helical rotation induced by the B-Z transition was also directly imaged in the DNA frame. Furthermore, the stepwise motions of mobile DNA along the DNA track were visualized on the DNA origami surface. These target-orientated observation systems should contribute to the detailed analysis of biomolecule motions in real time and at molecular resolution.

摘要

概要

直接成像分子运动是阐明单个分子物理性质及其反应机制的最基本问题之一。原子力显微镜(AFM)能够直接对生物分子进行成像,尤其是在生理环境下的生物分子。由于 AFM 能够以纳米级空间分辨率对分子进行成像,因此需要一种通用的观察支架来精确观察反应中分子间的相互作用。DNA 折纸技术的出现使得在设计的纳米结构中精确放置所需的分子成为可能,并能够在单分子水平上检测到分子。在我们的研究中,DNA 折纸系统被应用于使用高速原子力显微镜(HS-AFM)可视化反应中目标分子的详细运动,这使得能够在亚秒时间分辨率内分析生物分子的动态运动。在该系统中,可以结合各种生化特性,例如包含不受限制的 DNA 序列、修饰核苷和化学功能的各种双链 DNA(dsDNA)的放置。从物理角度来看,可以通过将 dsDNA 放置到 DNA 纳米结构中来控制 dsDNA 的张力和旋转。从拓扑学的角度来看,可以将 dsDNA 的取向和各种形状的 dsDNA (包括 Holliday 连接)结合起来,用于研究反应机制。本综述描述了 DNA 折纸系统与 HS-AFM 的结合,用于对各种生化反应(包括酶反应和 DNA 结构变化)进行成像。为了观察 DNA 甲基转移酶和 DNA 修复酶的行为和反应,将底物 dsDNA 掺入 DNA 框架的腔中,并使用 HS-AFM 观察与靶 dsDNA 结合的酶。还使用放置在 DNA 框架中的重组底物和 Holliday 连接中间体观察 DNA 重组,并通过向底物引入结构应力来控制反应方向。此外,使用附着在折纸结构上的模板 dsDNA 来可视化 RNA 聚合酶及其反应。为了观察 DNA 结构变化,使用 DNA 框架观察系统可视化光响应寡核苷酸的 G-四链体形成和破坏、切换行为以及 B-Z 转变。对于 G-四链体和双链 DNA 的形成和破坏,掺入 DNA 框架的两条 dsDNA 链可以将微小的结构变化放大为全局结构变化,从而可以通过 HS-AFM 观察它们的结合和解离。B-Z 转变引起的螺旋旋转的动态运动也直接在 DNA 框架中成像。此外,在 DNA 折纸表面上可视化了沿 DNA 轨道移动的可移动 DNA 的分步运动。这些面向目标的观察系统应该有助于实时和分子分辨率下对生物分子运动的详细分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验