Martinez Salazar Harold Roberto, Carbajal Juan Pablo
Artificial Intelligence Laboratory, Department of Informatics, University of Zurich Andreasstrasse 15 8050 Zurich, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066707. doi: 10.1103/PhysRevE.83.066707. Epub 2011 Jun 28.
In the area of bipedal locomotion, the spring-loaded inverted pendulum model has been proposed as a unified framework to explain the dynamics of a wide variety of gaits. In this paper, we present an analysis of the mathematical model and its dynamical properties. We use the perspective of hybrid dynamical systems to study the dynamics and define concepts such as partial stability and viability. With this approach, on the one hand, we identify stable and unstable regions of locomotion. On the other hand, we find ways to exploit the unstable regions of locomotion to induce gait transitions at a constant energy regime. Additionally, we show that simple nonconstant angle of attack control policies can render the system almost always stable.
在双足运动领域,弹簧加载倒立摆模型已被提出作为一个统一框架,用于解释各种步态的动力学。在本文中,我们对该数学模型及其动力学特性进行了分析。我们从混合动态系统的角度研究动力学,并定义诸如部分稳定性和生存能力等概念。通过这种方法,一方面,我们确定了运动的稳定和不稳定区域。另一方面,我们找到了在恒定能量状态下利用运动不稳定区域来诱导步态转变的方法。此外,我们表明简单的非恒定攻角控制策略可使系统几乎始终保持稳定。