Suppr超能文献

对矢状面运动中依赖姿势的腿部驱动进行建模。

Modeling posture-dependent leg actuation in sagittal plane locomotion.

机构信息

Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Bioinspir Biomim. 2009 Dec;4(4):046005. doi: 10.1088/1748-3182/4/4/046005. Epub 2009 Nov 30.

Abstract

The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

摘要

弹簧倒置摆模板已被证明能够准确地模拟各种奔跑动物的稳定运动动力学,并且为一整类动态奔跑机器人提供了灵感。虽然该模板通过能量守恒弹簧来模拟腿部动力学,但昆虫和动物的结构在一个支撑阶段会消耗、储存和产生能量。最近对腿部类似弹簧的特性以及动物对跌落步干扰的反应的研究表明,动物利用它们的腿来管理能量储存和耗散,这种管理对于步态稳定性很重要。在本文中,我们通过改变腿部触地点角度来扩展我们之前对弹簧倒置摆模板的控制分析,以包括支撑阶段的能量变化。通过腿部驱动实现能量变化,在支撑阶段改变无外力腿长,但保持定性正确的力和速度分布。与之前分析中确定的部分渐近稳定步态不同,以这种方式结合能量和腿部角度变化会产生完全的渐近稳定性。跌落步干扰模拟表明,控制策略相当稳健,步态可以从高达名义髋关节高度 30%的跌落中恢复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验