Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur, Chennai, Tamilnadu, India.
Colloids Surf B Biointerfaces. 2011 Nov 1;88(1):325-31. doi: 10.1016/j.colsurfb.2011.07.009. Epub 2011 Jul 12.
The notion to fight against multi drug resistant pathogens is a great deal in the field of nanomedicine. The identifiable antimicrobial action of metal bionanoparticles on many microorganisms is reported earlier. As silver bionanoparticles (Ag-BNPs) are known to have efficient antibacterial properties they are synthesized in ecofriendly and biocompatible way. The present study is focused on the extracellular biosynthesis of highly stable Ag-BNPs from bacterial strain Bacillus megaterium (NCIM 2326) by bio-reduction of silver ion using the culture supernatant, and to determine the antibacterial efficacy on multi drug resistant clinical pathogens such as Streptococcus pneumoniae and Salmonella typhi. The biosynthesis process is rapid and Ag-BNPs are formed within few minutes if AgNO(3) comes to contact with cell filtrate. Furthermore the synthesized Ag-BNPs are characterized by UV-vis spectroscopy, Atomic Force Microscopy (AFM), Thin Layer Chromatography (TLC) and Fourier Transform Infrared Spectroscopy (FTIR).
在纳米医学领域,对抗多药耐药病原体的概念非常重要。此前已有报道称,金属生物纳米粒子对许多微生物具有明显的抗菌作用。由于银生物纳米粒子(Ag-BNPs)具有高效的抗菌特性,因此以环保和生物相容的方式进行合成。本研究集中于从细菌菌株巨大芽孢杆菌(NCIM 2326)通过使用培养上清液的银离子的生物还原来体外合成高度稳定的 Ag-BNPs,并确定其对多药耐药临床病原体如肺炎链球菌和伤寒沙门氏菌的抗菌功效。生物合成过程非常迅速,如果 AgNO(3)与细胞滤液接触,Ag-BNPs 将在数分钟内形成。此外,通过紫外可见光谱法、原子力显微镜(AFM)、薄层层析(TLC)和傅里叶变换红外光谱(FTIR)对合成的 Ag-BNPs 进行了表征。