Suppr超能文献

使用光放大器的并行储层计算。

Parallel reservoir computing using optical amplifiers.

作者信息

Vandoorne Kristof, Dambre Joni, Verstraeten David, Schrauwen Benjamin, Bienstman Peter

机构信息

Photonics Research Group, Department of Information Technology, Ghent University-Interuniversity Microelectronics Center, Ghent, Belgium.

出版信息

IEEE Trans Neural Netw. 2011 Sep;22(9):1469-81. doi: 10.1109/TNN.2011.2161771. Epub 2011 Jul 29.

Abstract

Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

摘要

储层计算(RC)是一种受神经系统启发的计算范式,近年来在解决各种复杂的识别和分类问题方面越来越受欢迎。到目前为止,大多数实现都是基于软件的,这限制了它们的速度和功率效率。集成光子学为快速、高效且大规模并行的硬件实现提供了潜力。我们之前提出了一个耦合半导体光放大器网络,作为这种硬件实现的一个有趣测试案例。在本文中,我们通过仿真研究重要的设计参数以及工艺变化的影响。我们使用带有嘈杂背景音的孤立单词识别任务,来评估光子储层相对于基于泄漏双曲正切函数的传统软件储层实现的性能。我们的结果表明,在经过良好调谐的储层架构中使用相干光可带来显著的性能优势。最重要的设计参数是系统物理连接中的延迟和相移。通过优化这些参数的值,相干半导体光放大器(SOA)储层可以比传统的模拟储层取得更好的结果。我们还表明,工艺变化几乎不会降低性能,但放大器噪声可能会产生不利影响。因此,在设计基于SOA的RC实现时必须考虑这种影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验