Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
J Chem Phys. 2011 Jul 28;135(4):044122. doi: 10.1063/1.3605303.
An important element determining the time requirements of Born-Oppenheimer molecular dynamics (BOMD) is the convergence rate of the self-consistent solution of Roothaan equations (SCF). We show here that improved convergence and dynamics stability can be achieved by use of a Lagrangian formalism of BOMD with dissipation (DXL-BOMD). In the DXL-BOMD algorithm, an auxiliary electronic variable (e.g., the electron density or Fock matrix) is propagated and a dissipative force is added in the propagation to maintain the stability of the dynamics. Implementation of the approach in the self-consistent charge density functional tight-binding method makes possible simulations that are several hundred picoseconds in lengths, in contrast to earlier DFT-based BOMD calculations, which have been limited to tens of picoseconds or less. The increase in the simulation time results in a more meaningful evaluation of the DXL-BOMD method. A comparison is made of the number of iterations (and time) required for convergence of the SCF with DXL-BOMD and a standard method (starting with a zero charge guess for all atoms at each step), which gives accurate propagation with reasonable SCF convergence criteria. From tests using NVE simulations of C(2)F(4) and 20 neutral amino acid molecules in the gas phase, it is found that DXL-BOMD can improve SCF convergence by up to a factor of two over the standard method. Corresponding results are obtained in simulations of 32 water molecules in a periodic box. Linear response theory is used to analyze the relationship between the energy drift and the correlation of geometry propagation errors.
决定 Born-Oppenheimer 分子动力学 (BOMD) 时间要求的一个重要因素是 Roothaan 方程自洽解 (SCF) 的收敛速度。我们在这里表明,通过使用具有耗散的 BOMD 的拉格朗日形式(DXL-BOMD)可以实现改进的收敛和动力学稳定性。在 DXL-BOMD 算法中,辅助电子变量(例如电子密度或 Fock 矩阵)被传播,并且在传播中添加耗散力以保持动力学的稳定性。该方法在自洽电荷密度泛函紧束缚方法中的实现使得能够进行数百皮秒长度的模拟,而不是早期基于 DFT 的 BOMD 计算,其限制为数十皮秒或更短。模拟时间的增加使得对 DXL-BOMD 方法的更有意义的评估成为可能。比较了使用 DXL-BOMD 和标准方法(在每个步骤中对所有原子的零电荷猜测开始)收敛所需的迭代次数(和时间),这给出了具有合理 SCF 收敛标准的准确传播。通过在气相中使用 NVE 模拟 C(2)F(4)和 20 个中性氨基酸分子的测试,发现 DXL-BOMD 可以将标准方法的 SCF 收敛速度提高高达两倍。在周期性盒子中的 32 个水分子的模拟中获得了相应的结果。线性响应理论用于分析能量漂移与几何传播误差相关性之间的关系。