Suppr超能文献

组织工程化的椎间盘可产生新的基质,维持椎间盘高度,并恢复啮齿动物脊柱的生物力学功能。

Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine.

机构信息

Department of Biomedical Engineering, Cornell University, 151 Weill Hall, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13106-11. doi: 10.1073/pnas.1107094108. Epub 2011 Aug 1.

Abstract

Lower back and neck pain are leading physical conditions for which patients see their doctors in the United States. The organ commonly implicated in this condition is the intervertebral disc (IVD), which frequently herniates, ruptures, or tears, often causing pain and limiting spinal mobility. To date, approaches for replacement of diseased IVD have been confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Here we present the evaluation of a living, tissue-engineered IVD composed of a gelatinous nucleus pulposus surrounded by an aligned collagenous annulus fibrosus in the caudal spine of athymic rats for up to 6 mo. When implanted into the rat caudal spine, tissue-engineered IVD maintained disc space height, produced de novo extracellular matrix, and integrated into the spine, yielding an intact motion segment with dynamic mechanical properties similar to that of native IVD. These studies demonstrate the feasibility of engineering a functional spinal motion segment and represent a critical step in developing biological therapies for degenerative disc disease.

摘要

下背部和颈部疼痛是导致患者去看医生的主要身体状况。在美国,与这种情况相关的常见器官是椎间盘(IVD),它经常会突出、破裂或撕裂,常常导致疼痛和限制脊柱活动度。迄今为止,用于替换患病的 IVD 的方法仅限于旨在消除或使患病运动节段灵活的纯机械装置。在这里,我们评估了一种由凝胶状的髓核和排列整齐的纤维环组成的组织工程化 IVD,该组织工程化 IVD 位于无胸腺大鼠的尾部脊柱中,最长可达 6 个月。当植入大鼠尾部脊柱时,组织工程化的 IVD 保持了椎间盘间隙的高度,产生了新的细胞外基质,并与脊柱整合在一起,形成了具有类似于天然 IVD 的动态力学特性的完整运动节段。这些研究证明了工程化功能性脊柱运动节段的可行性,并代表了开发退行性椎间盘疾病的生物疗法的关键步骤。

相似文献

1
Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13106-11. doi: 10.1073/pnas.1107094108. Epub 2011 Aug 1.
3
Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine.
PLoS One. 2017 Oct 20;12(10):e0185716. doi: 10.1371/journal.pone.0185716. eCollection 2017.
4
Tissue-engineered intervertebral discs: MRI results and histology in the rodent spine.
J Neurosurg Spine. 2014 Apr;20(4):443-51. doi: 10.3171/2013.12.SPINE13112. Epub 2014 Feb 14.
5
Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model?
Eur Spine J. 2006 Aug;15 Suppl 3(Suppl 3):S433-8. doi: 10.1007/s00586-006-0177-x. Epub 2006 Jul 26.
6
In Vitro Generated Intervertebral Discs: Toward Engineering Tissue Integration.
Tissue Eng Part A. 2017 Sep;23(17-18):1001-1010. doi: 10.1089/ten.TEA.2016.0433. Epub 2017 Jul 11.
7
Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement.
Spine (Phila Pa 1976). 2004 Jun 15;29(12):1290-7; discussion 1297-8. doi: 10.1097/01.brs.0000128264.46510.27.
8
Intervertebral discs from spinal nondeformity and deformity patients have different mechanical and matrix properties.
Spine J. 2014 Mar 1;14(3):522-30. doi: 10.1016/j.spinee.2013.06.089. Epub 2013 Nov 15.
10
A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering.
PLoS One. 2015 Jun 26;10(6):e0131827. doi: 10.1371/journal.pone.0131827. eCollection 2015.

引用本文的文献

1
Fibronectin Peptide Modified Hydrogels Activate a Contractile Phenotype in Nucleus Pulposus Cells.
Adv Biol (Weinh). 2025 Jul 27:e00315. doi: 10.1002/adbi.202500315.
2
Bioactive Therapies for Degenerative Disc Disease: Challenges and Innovations.
World Neurosurg. 2025 Jul;199:124132. doi: 10.1016/j.wneu.2025.124132. Epub 2025 Jun 2.
3
Biomimetic Microchannel Integrated Silk Fibroin Scaffold for Regeneration of Intervertebral Disc Degeneration.
Biomater Res. 2025 May 28;29:0203. doi: 10.34133/bmr.0203. eCollection 2025.
4
Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models.
Cell Prolif. 2025 Sep;58(9):e70046. doi: 10.1111/cpr.70046. Epub 2025 May 19.
6
Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties.
Adv Nanobiomed Res. 2024 Sep;4(9). doi: 10.1002/anbr.202300173. Epub 2024 May 21.
7
Regenerative therapies for lumbar degenerative disc diseases: a literature review.
Front Bioeng Biotechnol. 2024 Aug 26;12:1417600. doi: 10.3389/fbioe.2024.1417600. eCollection 2024.

本文引用的文献

3
No justification for cervical disk prostheses in clinical practice: a meta-analysis of randomized controlled trials.
Neurosurgery. 2010 Jun;66(6):1153-60; discussion 1160. doi: 10.1227/01.NEU.0000369189.09182.5F.
4
Engineered disc-like angle-ply structures for intervertebral disc replacement.
Spine (Phila Pa 1976). 2010 Apr 15;35(8):867-73. doi: 10.1097/BRS.0b013e3181d74414.
5
Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population.
J Biomech. 2010 May 7;43(7):1330-6. doi: 10.1016/j.jbiomech.2010.01.023. Epub 2010 Feb 18.
6
Mechanical design criteria for intervertebral disc tissue engineering.
J Biomech. 2010 Apr 19;43(6):1017-30. doi: 10.1016/j.jbiomech.2009.12.001. Epub 2010 Jan 18.
7
Tissue engineering: Function follows form.
Nat Mater. 2009 Dec;8(12):923-4. doi: 10.1038/nmat2577.
9
New challenges for intervertebral disc treatment using regenerative medicine.
Tissue Eng Part B Rev. 2010 Feb;16(1):147-58. doi: 10.1089/ten.TEB.2009.0451.
10
An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs.
Tissue Eng Part C Methods. 2010 Aug;16(4):693-703. doi: 10.1089/ten.TEC.2009.0441.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验