School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States.
Anal Chem. 2011 Sep 15;83(18):7044-52. doi: 10.1021/ac2011153. Epub 2011 Aug 23.
Stochasticity in gene expression, protein or metabolite levels contributes to cell-cell variations, the analysis of which could lead to a better understanding of cellular processes and drug responses. Current technologies are limited in their throughput, resolution (in space, time, and tracking individual cells instead of population average) and the ability to control cellular environment. A few microfluidic tools have been developed to trap and image cells; however, in most designs available to date, there is a compromise among loading efficiency, speed, the ability to trap single cells, and density or number of trapped cells. To meet the needs of single-cell imaging studies, we developed a microfluidic platform for high-throughput capture and imaging of thousands of single cells. The optimized trapping mechanism enables 95% of the traps to be occupied with single cells, with a trap density of 860 traps/mm(2). The dense array allows up to 800 cells to be imaged simultaneously with a 4x objective and a typical camera setup. Capture occurs with low shear and 94% viability after 24 h. This platform is compatible with other upstream microfluidic components for complex cell stimulation patterns, and we show here the ability to measure heterogeneity in calcium oscillatory behavior in genetically identical cells and monitor kinetic cellular response to chemical stimuli.
基因表达、蛋白质或代谢物水平的随机性导致细胞间的变化,对其进行分析可以帮助我们更好地理解细胞过程和药物反应。目前的技术在通量、分辨率(在空间、时间和跟踪单个细胞而不是群体平均值方面)以及控制细胞环境的能力方面存在局限性。已经开发出一些微流控工具来捕获和成像细胞;然而,在迄今为止可用的大多数设计中,在加载效率、速度、捕获单个细胞的能力以及捕获细胞的密度或数量之间存在折衷。为了满足单细胞成像研究的需求,我们开发了一种用于高通量捕获和成像数千个单细胞的微流控平台。优化的捕获机制可使 95%的捕获器被单个细胞占据,捕获器密度为 860 个/平方毫米。密集的阵列允许同时使用 4x 物镜和典型的相机设置对多达 800 个细胞进行成像。在 24 小时后,通过低剪切力捕获,细胞的存活率达到 94%。该平台与其他上游微流控组件兼容,用于复杂的细胞刺激模式,我们在这里展示了测量遗传上相同的细胞中钙振荡行为异质性的能力,并监测细胞对化学刺激的动力学反应。