Suppr超能文献

放射性药物治疗中宏观肿瘤的细胞剂量学模型。

A model of cellular dosimetry for macroscopic tumors in radiopharmaceutical therapy.

机构信息

Johns Hopkins University, Baltimore, Maryland 21231, USA.

出版信息

Med Phys. 2011 Jun;38(6):2892-903. doi: 10.1118/1.3576051.

Abstract

PURPOSE

In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably.

METHODS

Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers.

RESULTS

The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice.

CONCLUSIONS

The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

摘要

目的

在放射药物治疗癌症的方法中,特别是在将实验室结果转化为临床环境时,建模一直是指导和理解细胞水平操作过程以及这些过程如何与宏观可观察量相关的宝贵工具。肿瘤控制概率 (TCP) 是选择的剂量学终点数量,与实验和临床数据有关:它需要了解单个细胞吸收的剂量,因为它取决于评估治疗杀死每个细胞的能力。在临床和实验研究中都可以看到的宏观肿瘤包含太多的细胞,无法在蒙特卡罗模拟中单独建模;然而,对于衰变与细胞的比例较低的情况,需要一种不消除与低活性相关的统计考虑的基于细胞的模型。作者在此介绍了一种简单的基于球体的模型的改编,该模型可以更可靠地推断出宏观肿瘤及其终点数量(如 TCP)的细胞水平剂量。

方法

使用 GEANT4 构建了 10 个代表不同大小肿瘤的均匀球体。放射性核素 131I 被随机允许为每个模型尺寸和 7 种不同的衰变与细胞数比 (N(r)) 衰变:1000、500、200、100、50、20 和 10 个细胞衰变。将沉积的能量收集在径向箱中,并将每个箱的质量除以箱的质量以获得平均箱吸收剂量。为了模拟细胞模型,计算了每个箱中存在的细胞数量,并为每个细胞分配了一个与箱平均吸收剂量相等的吸收剂量,该剂量是根据高斯概率分布随机确定的,分布宽度等于与细胞衰变比一致的统计不确定性,即等于 Nr-1/2。从剂量体积直方图中计算了不同情况下的细胞存活分数、等效均匀剂量 (EUD) 和 TCP。构建了包含在六方晶格中单个球形细胞 (15 µm 直径) 的可比大小的球形模型,并对所有相同的先前情况执行了蒙特卡罗模拟。计算了剂量学数量,并将其与调整后的简单球体模型结果进行了比较。然后将该模型应用于靶向 Epstein-Barr 病毒 (EBV) 表达癌症的硼替佐米诱导的酶靶向放射治疗 (BETR) 策略。

结果

调整后的简单球体和全细胞模型之间的 TCP 值相差在 2% 以内。此外,还生成了非均匀活性分布的模型,并在具有类似可比性的调整后的球体和细胞模型之间比较了结果。来自实验性宏观肿瘤结果的 TCP 值与 BETR 治疗的 EBV 表达淋巴瘤肿瘤的实验观察结果一致。

结论

本文提出的调整后的球体模型提供了比简单球体更准确的 TCP 值,与全细胞蒙特卡罗模拟相当,同时保持了简单球体模型的简单性。该模型为补充和理解与放射药物治疗相关的实验室和临床结果提供了基础。

相似文献

10
Averaging of absorbed doses: How matter matters.吸收剂量的平均:物质的重要性。
Med Phys. 2023 Oct;50(10):6600-6613. doi: 10.1002/mp.16528. Epub 2023 Jun 5.

引用本文的文献

7
Radiopharmaceutical Therapy.放射性药物治疗。
Health Phys. 2019 Feb;116(2):175-178. doi: 10.1097/HP.0000000000001000.
10
Microdosimetry for targeted alpha therapy of cancer.用于癌症靶向 alpha 治疗的微剂量学。
Comput Math Methods Med. 2012;2012:153212. doi: 10.1155/2012/153212. Epub 2012 Sep 4.

本文引用的文献

1
Variability of radioiodine measurements in the thyroid.甲状腺中放射性碘测量的变异性
Radiat Prot Dosimetry. 2011 Mar;144(1-4):326-9. doi: 10.1093/rpd/ncq312. Epub 2010 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验