Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA.
Med Phys. 2011 Jun;38(6):3025-38. doi: 10.1118/1.3589136.
We propose a novel approach for PET respiratory motion correction using tagged-MRI and simultaneous PET-MRI acquisitions.
We use a tagged-MRI acquisition followed by motion tracking in the phase domain to estimate the nonrigid deformation of biological tissues during breathing. In order to accurately estimate motion even in the presence of noise and susceptibility artifacts, we regularize the traditional HARP tracking strategy using a quadratic roughness penalty on neighboring displacement vectors (R-HARP). We then incorporate the motion fields estimated with R-HARP in the system matrix of an MLEM PET reconstruction algorithm formulated both for sinogram and list-mode data representations. This approach allows reconstruction of all detected coincidences in a single image while modeling the effect of motion both in the emission and the attenuation maps. At present, tagged-MRI does not allow estimation of motion in the lungs and our approach is therefore limited to motion correction in soft tissues. Since it is difficult to assess the accuracy of motion correction approaches in vivo, we evaluated the proposed approach in numerical simulations of simultaneous PET-MRI acquisitions using the NCAT phantom. We also assessed its practical feasibility in PET-MRI acquisitions of a small deformable phantom that mimics the complex deformation pattern of a lung that we imaged on a combined PET-MRI brain scanner.
Simulations showed that the R-HARP tracking strategy accurately estimated realistic respiratory motion fields for different levels of noise in the tagged-MRI simulation. In simulations of tumors exhibiting increased uptake, contrast estimation was 20% more accurate with motion correction than without. Signal-to-noise ratio (SNR) was more than 100% greater when performing motion-corrected reconstruction which included all counts, compared to when reconstructing only coincidences detected in the first of eight gated frames. These results were confirmed in our proof-of-principle PET-MRI acquisitions, indicating that our motion correction strategy is accurate, practically feasible, and is therefore ready to be tested in vivo.
This work shows that PET motion correction using motion fields measured with tagged-MRI in simultaneous PET-MRI acquisitions can be made practical for clinical application and that doing so has the potential to remove motion blur in whole-body PET studies of the torso.
我们提出了一种使用标记 MRI 和同时 PET-MRI 采集进行 PET 呼吸运动校正的新方法。
我们使用标记 MRI 采集,然后在相位域中进行运动跟踪,以估计呼吸过程中生物组织的非刚性变形。为了即使在存在噪声和磁化率伪影的情况下也能准确估计运动,我们使用二次粗糙度惩罚对相邻位移向量(R-HARP)对传统 HARP 跟踪策略进行正则化。然后,我们将使用 R-HARP 估计的运动场合并到 MLEM PET 重建算法的系统矩阵中,该算法同时针对正弦图和列表模式数据表示形式进行了制定。这种方法允许在单个图像中重建所有检测到的符合事件,同时在发射和衰减图中模拟运动的影响。目前,标记 MRI 无法估计肺部的运动,因此我们的方法仅限于软组织的运动校正。由于很难在体内评估运动校正方法的准确性,因此我们在使用 NCAT 体模进行同时 PET-MRI 采集的数值模拟中评估了所提出的方法。我们还评估了该方法在模仿我们在组合 PET-MRI 脑扫描仪上成像的肺部的复杂变形模式的小型可变形体模的 PET-MRI 采集中的实际可行性。
模拟结果表明,R-HARP 跟踪策略可以准确估计标记 MRI 模拟中不同噪声水平下的真实呼吸运动场。在显示摄取增加的肿瘤的模拟中,与无运动校正相比,对比度估计的准确性提高了 20%。与仅重建在八个门控帧中的第一帧中检测到的符合事件相比,当执行包括所有计数的运动校正重建时,信噪比(SNR)增加了 100%以上。这些结果在我们的初步 PET-MRI 采集中得到了证实,表明我们的运动校正策略准确、实际可行,因此已准备好在体内进行测试。
这项工作表明,使用同时 PET-MRI 采集中的标记 MRI 测量的运动场进行 PET 运动校正可以在临床应用中变得实用,并且这样做有可能消除躯干全身 PET 研究中的运动模糊。