Suppr超能文献

通过金属@氧化物核壳纳米结构实现高效的等离子体增强染料敏化太阳能电池。

Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure.

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

ACS Nano. 2011 Sep 27;5(9):7108-16. doi: 10.1021/nn201808g. Epub 2011 Aug 4.

Abstract

We have investigated the effects of localized surface plasmons (LSPs) on the performance of dye-sensitized solar cells (DSSCs). The LSPs from Ag nanoparticles (NPs) increase the absorption of the dye molecules, allowing us to decrease the thickness of photoanodes, which improves electron collection and device performance. The plasmon-enhanced DSSCs became feasible through incorporating core-shell Ag@TiO(2) NPs into conventional TiO(2) photoanodes. The thin shell keeps the photoelectrons from recombining on the surface of metal NPs with dye and electrolyte and improves the stability of metal NPs. With 0.6 wt % Ag@TiO(2) NPs, the power conversion efficiency of DSSCs with thin photoanodes (1.5 μm) increases from 3.1% to 4.4%. Moreover, a small amount of Ag@TiO(2) NPs (0.1 wt %) improves efficiency from 7.8% to 9.0% while decreasing photoanode thickness by 25% for improved electron collection. In addition, plasmon-enhanced DSSCs require 62% less material to maintain the same efficiency as conventional DSSCs.

摘要

我们研究了局域表面等离激元(LSP)对染料敏化太阳能电池(DSSC)性能的影响。来自 Ag 纳米粒子(NPs)的 LSP 增加了染料分子的吸收,使我们能够减小光阳极的厚度,从而提高电子收集和器件性能。通过将核壳 Ag@TiO(2) NPs 掺入传统 TiO(2)光阳极,实现了等离子体增强的 DSSC。薄壳可以防止光电子与染料和电解质在金属 NPs 表面重新结合,并提高金属 NPs 的稳定性。在添加 0.6wt% Ag@TiO(2) NPs 的情况下,具有薄光阳极(1.5μm)的 DSSC 的功率转换效率从 3.1%提高到 4.4%。此外,少量的 Ag@TiO(2) NPs(0.1wt%)在提高电子收集效率的同时,将光阳极厚度减少 25%,效率从 7.8%提高到 9.0%。此外,等离子体增强的 DSSC 需要的材料减少 62%,即可保持与传统 DSSC 相同的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验