Suppr超能文献

rapmad:肽微阵列数据分析的稳健性分析。

rapmad: Robust analysis of peptide microarray data.

机构信息

The Institute for Translational Oncology and Immunology (TrOn), 55131 Mainz, Germany.

出版信息

BMC Bioinformatics. 2011 Aug 4;12:324. doi: 10.1186/1471-2105-12-324.

Abstract

BACKGROUND

Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments and have recently seen an increased field of application ranging from immunological studies to systems biology. By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays, computational methods need to be tailored to these specifications to allow a robust and automated data analysis. While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps. Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust Alignment of Peptide MicroArray Data), a novel computational tool implemented in R.

RESULTS

We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high throughput screening experiments.

CONCLUSIONS

rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data. The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.

摘要

背景

肽微阵列作为一种筛选工具,在肽组学实验中具有巨大的潜力,并且最近在免疫研究到系统生物学等领域的应用范围不断扩大。通过允许在单次运行中平行分析数千种肽,它们适用于高通量设置。由于肽微阵列的数据特征与 DNA 寡核苷酸微阵列不同,因此需要针对这些规格定制计算方法,以允许进行稳健和自动化的数据分析。虽然后续实验可以确保结果的特异性,但无法在后续步骤中恢复敏感性。因此,提供敏感性是数据分析程序的主要目标。为此,我们创建了 rapmad(肽微阵列数据的稳健对齐),这是一种在 R 中实现的新型计算工具。

结果

我们在数千个肽点的抗体反应性实验中评估了 rapmad,并将其与两种现有的肽微阵列分析算法进行了比较。rapmad 表现出与现有软件解决方案相当的竞争优势。特别是,它在不牺牲特异性的情况下,对低强度设置显示出明显提高的敏感性。因此,它有助于提高高通量筛选实验的效果。

结论

rapmad 允许对高通量肽阵列数据进行稳健和敏感的自动分析。rapmad R 包以及数据集可从 http://www.tron-mz.de/compmed 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcf4/3174949/04e2716c4e42/1471-2105-12-324-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验