Suppr超能文献

血清的蛋白质组学和代谢组学联合分析揭示了补体系统与肥胖的关联,并确定了身体脂肪量变化的新标志物。

Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes.

机构信息

IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.

出版信息

J Proteome Res. 2011 Oct 7;10(10):4769-88. doi: 10.1021/pr2005555. Epub 2011 Aug 29.

Abstract

Obesity is associated with multiple adverse health effects and a high risk of developing metabolic and cardiovascular diseases. Therefore, there is a great need to identify circulating parameters that link changes in body fat mass with obesity. This study combines proteomic and metabolomic approaches to identify circulating molecules that discriminate healthy lean from healthy obese individuals in an exploratory study design. To correct for variations in physical activity, study participants performed a one hour exercise bout to exhaustion. Subsequently, circulating factors differing between lean and obese individuals, independent of physical activity, were identified. The DIGE approach yielded 126 differentially abundant spots representing 39 unique proteins. Differential abundance of proteins was confirmed by ELISA for antithrombin-III, clusterin, complement C3 and complement C3b, pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP4), serum amyloid P (SAP), and vitamin-D binding protein (VDBP). Targeted serum metabolomics of 163 metabolites identified 12 metabolites significantly related to obesity. Among those, glycine (GLY), glutamine (GLN), and glycero-phosphatidylcholine 42:0 (PCaa 42:0) serum concentrations were higher, whereas PCaa 32:0, PCaa 32:1, and PCaa 40:5 were decreased in obese compared to lean individuals. The integrated bioinformatic evaluation of proteome and metabolome data yielded an improved group separation score of 2.65 in contrast to 2.02 and 2.16 for the single-type use of proteomic or metabolomics data, respectively. The identified circulating parameters were further investigated in an extended set of 30 volunteers and in the context of two intervention studies. Those included 14 obese patients who had undergone sleeve gastrectomy and 12 patients on a hypocaloric diet. For determining the long-term adaptation process the samples were taken six months after the treatment. In multivariate regression analyses, SAP, CLU, RBP4, PEDF, GLN, and C18:2 showed the strongest correlation to changes in body fat mass. The combined serum proteomic and metabolomic profiling reveals a link between the complement system and obesity and identifies both novel (C3b, CLU, VDBP, and all metabolites) and confirms previously discovered markers (PEDF, RBP4, C3, ATIII, and SAP) of body fat mass changes.

摘要

肥胖与多种不良健康影响以及代谢和心血管疾病风险增加有关。因此,非常有必要确定与体脂肪量变化相关的循环参数。本研究结合蛋白质组学和代谢组学方法,在探索性研究设计中鉴定可区分健康瘦人与健康肥胖者的循环分子。为了纠正身体活动的变化,研究参与者进行了一小时的力竭运动。随后,确定了独立于身体活动的瘦人和肥胖个体之间存在差异的循环因素。DIGE 方法产生了 126 个差异丰度斑点,代表 39 个独特的蛋白质。通过 ELISA 对抗凝血酶-III、载脂蛋白 J、补体 C3 和补体 C3b、色素上皮衍生因子 (PEDF)、视黄醇结合蛋白 4 (RBP4)、血清淀粉样蛋白 P (SAP) 和维生素 D 结合蛋白 (VDBP) 进行了差异丰度的确认。对 163 种代谢物的靶向血清代谢组学分析确定了 12 种与肥胖显著相关的代谢物。其中,甘氨酸 (GLY)、谷氨酰胺 (GLN) 和甘油磷酸胆碱 42:0 (PCaa 42:0) 的血清浓度较高,而 PCaa 32:0、PCaa 32:1 和 PCaa 40:5 在肥胖个体中则降低。蛋白质组学和代谢组学数据的综合生物信息学评估得到了 2.65 的改善组分离评分,而单独使用蛋白质组学或代谢组学数据的组分离评分分别为 2.02 和 2.16。在 30 名志愿者的扩展组和两项干预研究中进一步研究了鉴定出的循环参数。其中包括 14 名接受袖状胃切除术的肥胖患者和 12 名接受低热量饮食的患者。为了确定长期适应过程,在治疗后六个月采集样本。在多元回归分析中,SAP、CLU、RBP4、PEDF、GLN 和 C18:2 与体脂肪量变化相关性最强。血清蛋白质组学和代谢组学联合分析显示,补体系统与肥胖之间存在联系,并确定了新的(C3b、CLU、VDBP 和所有代谢物)和证实了先前发现的体脂肪量变化标志物(PEDF、RBP4、C3、ATIII 和 SAP)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验