Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
BMC Genomics. 2011 Aug 9;12:405. doi: 10.1186/1471-2164-12-405.
The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4.
We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA.
In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant signalling pathways confer a greater robustness to the response to glucose, while cooperative pathways provide a greater flexibility.
酵母酿酒酵母中的基因转录模式受葡萄糖的存在强烈影响。细胞内 cAMP 浓度升高引发的蛋白激酶 A (PKA)活性增加,可以解释葡萄糖对转录的许多影响。在酿酒酵母中,三个基因 TPK1、TPK2 和 TPK3 编码 PKA 的催化亚基。tpk1 tpk2 tpk3 三突变体的生存能力缺失可以被 yak1 或 msn2/msn4 等突变抑制。为了研究 PKA 在葡萄糖对基因表达的控制中的作用,我们比较了野生型菌株和两种缺乏 PKA 活性的菌株中葡萄糖对全局转录的影响,这两种菌株分别为 tpk1 tpk2 tpk3 yak1 和 tpk1 tpk2 tpk3 msn2 msn4。
我们已经确定了不同类别的基因,可以在没有 PKA 的情况下被葡萄糖诱导 - 或抑制 -。代表性的例子分别是葡萄糖利用所需的基因和参与其他碳源代谢的基因。在缺乏 PKA 的菌株中,对葡萄糖有反应的基因中,有些也受涉及 PKA 激活的冗余信号通路控制,而其他基因在 PKA 通过增加 cAMP 浓度激活时不受影响。另一方面,在缺乏 PKA 时对葡萄糖没有反应的基因中,有些基因即使在没有葡萄糖的情况下,也对增加的 cAMP 水平有完整的反应,而其他基因似乎需要不同信号通路的合作。我们还表明,对于许多通过 PKA 依赖途径受葡萄糖控制的基因,mRNA 水平的变化是短暂的。我们发现,在以生糖方式生长的细胞中,在缺乏 PKA 的菌株中,一小部分基因(主要与应激反应有关)的表达减少。
在酿酒酵母中,葡萄糖的转录反应是由多种途径触发的,这些途径单独或组合作用,其中 PKA 通常参与其中。冗余信号通路赋予了对葡萄糖反应更强的稳健性,而协同信号通路提供了更大的灵活性。