Suppr超能文献

基于外显子组测序的拷贝数变异和杂合性丢失检测:ExomeCNV。

Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV.

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Bioinformatics. 2011 Oct 1;27(19):2648-54. doi: 10.1093/bioinformatics/btr462. Epub 2011 Aug 9.

Abstract

MOTIVATION

The ability to detect copy-number variation (CNV) and loss of heterozygosity (LOH) from exome sequencing data extends the utility of this powerful approach that has mainly been used for point or small insertion/deletion detection.

RESULTS

We present ExomeCNV, a statistical method to detect CNV and LOH using depth-of-coverage and B-allele frequencies, from mapped short sequence reads, and we assess both the method's power and the effects of confounding variables. We apply our method to a cancer exome resequencing dataset. As expected, accuracy and resolution are dependent on depth-of-coverage and capture probe design.

AVAILABILITY

CRAN package 'ExomeCNV'.

CONTACT

fsathira@fas.harvard.edu; snelson@ucla.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

从外显子测序数据中检测拷贝数变异 (CNV) 和杂合性丢失 (LOH) 的能力扩展了这种强大方法的实用性,该方法主要用于点突变或小插入/缺失检测。

结果

我们提出了 ExomeCNV,这是一种使用覆盖深度和 B 等位基因频率从映射的短序列读取中检测 CNV 和 LOH 的统计方法,我们评估了该方法的功效和混杂变量的影响。我们将我们的方法应用于癌症外显子重测序数据集。正如预期的那样,准确性和分辨率取决于覆盖深度和捕获探针设计。

可用性

CRAN 软件包“ExomeCNV”。

联系人

fsathira@fas.harvard.edu; snelson@ucla.edu

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

引用本文的文献

5
JLOH: Inferring loss of heterozygosity blocks from sequencing data.《人类遗传学杂志》:从测序数据推断杂合性缺失区域。
Comput Struct Biotechnol J. 2023 Nov 7;21:5738-5750. doi: 10.1016/j.csbj.2023.11.003. eCollection 2023.

本文引用的文献

2
Exome sequencing: the sweet spot before whole genomes.外显子组测序:全基因组测序前的甜蜜点。
Hum Mol Genet. 2010 Oct 15;19(R2):R145-51. doi: 10.1093/hmg/ddq333. Epub 2010 Aug 12.
4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验