Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, USA.
Ecol Appl. 2011 Jul;21(5):1490-505. doi: 10.1890/09-1394.1.
Biogeochemical models have been used to evaluate long-term ecosystem responses to global change on decadal and century time scales. Recently, data assimilation has been applied to improve these models for ecological forecasting. It is not clear what the relative information contributions of model (structure and parameters) vs. data are to constraints of short- and long-term forecasting. In this study, we assimilated eight sets of 10-year data (foliage, woody, and fine root biomass, litter fall, forest floor carbon [C], microbial C, soil C, and soil respiration) collected from Duke Forest into a Terrestrial Ecosystem model (TECO). The relative information contribution was measured by Shannon information index calculated from probability density functions (PDFs) of carbon pool sizes. The null knowledge without a model or data was defined by the uniform PDF within a prior range. The relative model contribution was information content in the PDF of modeled carbon pools minus that in the uniform PDF, while the relative data contribution was the information content in the PDF of modeled carbon pools after data was assimilated minus that before data assimilation. Our results showed that the information contribution of the model to constrain carbon dynamics increased with time whereas the data contribution declined. The eight data sets contributed more than the model to constrain C dynamics in foliage and fine root pools over the 100-year forecasts. The model, however, contributed more than the data sets to constrain the litter, fast soil organic matter (SOM), and passive SOM pools. For the two major C pools, woody biomass and slow SOM, the model contributed less information in the first few decades and then more in the following decades than the data. Knowledge of relative information contributions of model vs. data is useful for model development, uncertainty analysis, future data collection, and evaluation of ecological forecasting.
生物地球化学模型已被用于评估数十年和数百年时间尺度上全球变化对生态系统的长期响应。最近,数据同化已被应用于改进这些模型以进行生态预测。目前尚不清楚模型(结构和参数)与数据对短期和长期预测的约束的相对信息贡献是什么。在这项研究中,我们将来自杜克森林的 8 组 10 年数据(叶片、木质和细根生物量、凋落物、林地表层碳[C]、微生物 C、土壤 C 和土壤呼吸)同化到陆地生态系统模型(TECO)中。相对信息贡献是通过从碳库大小的概率密度函数(PDF)计算香农信息指数来衡量的。没有模型或数据的零知识是通过先验范围内的均匀 PDF 定义的。模型的相对贡献是模型化碳库 PDF 中的信息量减去均匀 PDF 中的信息量,而数据的相对贡献是同化数据后模型化碳库 PDF 中的信息量减去同化数据前的信息量。我们的结果表明,模型对约束碳动态的信息贡献随着时间的推移而增加,而数据的贡献则下降。在 100 年的预测中,这 8 个数据集对约束叶片和细根库中的 C 动态的贡献大于模型。然而,模型对约束凋落物、快速土壤有机质(SOM)和被动 SOM 库的贡献大于数据集。对于两个主要的 C 库,木质生物量和慢 SOM,模型在前几十年的信息量贡献较少,随后几十年的信息量贡献大于数据。了解模型与数据的相对信息贡献对于模型开发、不确定性分析、未来数据收集以及生态预测评估是有用的。