Suppr超能文献

西尼罗河病毒对选定的北美鸟类数量的影响。

The impact of West Nile virus on the abundance of selected North American birds.

机构信息

Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA.

出版信息

BMC Vet Res. 2011 Aug 11;7:43. doi: 10.1186/1746-6148-7-43.

Abstract

BACKGROUND

The emergence of West Nile virus (WNV) in North America has been associated with high mortality in the native avifauna and has raised concerns about the long-term impact of WNV on bird populations. Here, we present results from a longitudinal analysis of annual counts of six bird species, using North American Breeding Bird Survey data from ten states (1994 to 2010). We fit overdispersed Poisson models to annual counts. Counts from successive years were linked by an autoregressive process that depended on WNV transmission intensity (annual West Nile neuroinvasive disease reports) and was adjusted by El Niño Southern Oscillation events. These models were fit using a Markov chain Monte Carlo algorithm.

RESULTS

Model fit was mostly excellent, especially for American Crows, for which our models explained between 26% and 81% of the observed variance. The impact of WNV on bird populations was quantitatively evaluated by contrasting hypothetical count trajectories (omission of WNV) with observed counts. Populations of American crows were most consistently affected with a substantial cumulative impact in six of ten states. The largest negative impact, almost 60%, was found in Illinois. A regionally substantial decline was also seen for American Robins and House Sparrows, while the other species appeared unaffected.

CONCLUSIONS

Our results confirm findings from previous studies that single out American Crows as the species most vulnerable to WNV infection. We discuss strengths and limitations of this and other methods for quantifying the impact of WNV on bird populations.

摘要

背景

西尼罗河病毒(WNV)在北美的出现与本地鸟类群的高死亡率有关,并引起了对 WNV 对鸟类种群的长期影响的关注。在这里,我们根据十个州的北美繁殖鸟类调查数据(1994 年至 2010 年),呈现了对六种鸟类物种的年度计数进行的纵向分析结果。我们使用过度分散泊松模型拟合年度计数。通过依赖于 WNV 传播强度(年度西尼罗河神经侵袭性疾病报告)的自回归过程将连续几年的计数联系起来,并且通过厄尔尼诺南方涛动事件进行了调整。这些模型使用马尔可夫链蒙特卡罗算法进行拟合。

结果

模型拟合大多非常出色,尤其是对于美洲乌鸦,我们的模型解释了其观察到的方差的 26%至 81%。通过对比假设的计数轨迹(省略 WNV)与观察到的计数,定量评估了 WNV 对鸟类种群的影响。美洲乌鸦的种群受到的影响最为一致,在十个州中的六个州中具有实质性的累积影响。在伊利诺伊州发现的影响最大,接近 60%。还观察到美洲知更鸟和家麻雀的区域性显著下降,而其他物种似乎没有受到影响。

结论

我们的结果证实了先前研究的发现,即美洲乌鸦是最容易受到 WNV 感染的物种。我们讨论了这种方法以及其他量化 WNV 对鸟类种群影响的方法的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a62/3163188/fa91984c47f3/1746-6148-7-43-1.jpg

相似文献

1
The impact of West Nile virus on the abundance of selected North American birds.
BMC Vet Res. 2011 Aug 11;7:43. doi: 10.1186/1746-6148-7-43.
3
[West Nile virus. Prevalence and significance as a zoonotic pathogen].
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2004 Jul;47(7):653-60. doi: 10.1007/s00103-004-0864-x.
4
Bird community composition linked to human West Nile virus cases along the Colorado front range.
Ecohealth. 2010 Dec;7(4):439-47. doi: 10.1007/s10393-010-0360-8. Epub 2010 Dec 2.
7
West Nile virus transmission and ecology in birds.
Ann N Y Acad Sci. 2001 Dec;951:54-7. doi: 10.1111/j.1749-6632.2001.tb02684.x.
8
Modeling movement of West Nile virus in the Western hemisphere.
Vector Borne Zoonotic Dis. 2006 Summer;6(2):128-39. doi: 10.1089/vbz.2006.6.128.
9
Modelling the dynamics of West Nile Virus.
Bull Math Biol. 2005 Nov;67(6):1157-72. doi: 10.1016/j.bulm.2004.11.008.

引用本文的文献

1
The utility of a Bayesian predictive model to forecast neuroinvasive West Nile virus disease in the United States of America, 2022.
PLoS One. 2023 Sep 8;18(9):e0290873. doi: 10.1371/journal.pone.0290873. eCollection 2023.
2
Epidemic versus endemic West Nile virus dead bird surveillance in California: Changes in sensitivity and focus.
PLoS One. 2023 Apr 6;18(4):e0284039. doi: 10.1371/journal.pone.0284039. eCollection 2023.
3
Flavivirus Persistence in Wildlife Populations.
Viruses. 2021 Oct 18;13(10):2099. doi: 10.3390/v13102099.
4
Bird Species Involved in West Nile Virus Epidemiological Cycle in Southern Québec.
Int J Environ Res Public Health. 2020 Jun 23;17(12):4517. doi: 10.3390/ijerph17124517.
6
Linking Bird and Mosquito Data to Assess Spatiotemporal West Nile Virus Risk in Humans.
Ecohealth. 2019 Mar;16(1):70-81. doi: 10.1007/s10393-019-01393-8. Epub 2019 Jan 23.
7
Evidence for co-evolution of West Nile Virus and house sparrows in North America.
PLoS Negl Trop Dis. 2014 Oct 30;8(10):e3262. doi: 10.1371/journal.pntd.0003262. eCollection 2014 Oct.
8
Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms.
PLoS One. 2014 Jun 27;9(6):e100802. doi: 10.1371/journal.pone.0100802. eCollection 2014.
9
West nile virus transmission in winter: the 2013 great salt lake bald eagle and eared grebes mortality event.
PLoS Curr. 2014 Apr 18;6:ecurrents.outbreaks.b0f031fc8db2a827d9da0f30f0766871. doi: 10.1371/currents.outbreaks.b0f031fc8db2a827d9da0f30f0766871.
10
The complex epidemiological scenario of West Nile virus in Italy.
Int J Environ Res Public Health. 2013 Sep 30;10(10):4669-89. doi: 10.3390/ijerph10104669.

本文引用的文献

2
DIFFERENTIAL IMPACT OF WEST NILE VIRUS ON CALIFORNIA BIRDS.
Condor. 2009;111(1):1-20. doi: 10.1525/cond.2009.080013.
3
4
West Nile virus emergence and large-scale declines of North American bird populations.
Nature. 2007 Jun 7;447(7145):710-3. doi: 10.1038/nature05829. Epub 2007 May 16.
5
West Nile virus antibody prevalence in American crows (Corvus brachyrhynchos) and fish crows (Corvus ossifragus) in Georgia, USA.
Avian Dis. 2007 Mar;51(1):125-8. doi: 10.1637/0005-2086(2007)051[0125:WNVAPI]2.0.CO;2.
6
Prediction of equine risk of West Nile virus infection based on dead bird surveillance.
Vector Borne Zoonotic Dis. 2006 Spring;6(1):1-6. doi: 10.1089/vbz.2006.6.1.
7
West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior.
PLoS Biol. 2006 Apr;4(4):e82. doi: 10.1371/journal.pbio.0040082. Epub 2006 Feb 28.
8
West Nile virus activity--United States, January 1-December 1, 2005.
MMWR Morb Mortal Wkly Rep. 2005 Dec 16;54(49):1253-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验