Suppr超能文献

2022 年美国基于贝叶斯预测模型预测西尼罗河病毒神经侵袭病的实用性。

The utility of a Bayesian predictive model to forecast neuroinvasive West Nile virus disease in the United States of America, 2022.

机构信息

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States of America.

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, United States of America.

出版信息

PLoS One. 2023 Sep 8;18(9):e0290873. doi: 10.1371/journal.pone.0290873. eCollection 2023.

Abstract

Arboviruses (arthropod-borne-viruses) are an emerging global health threat that are rapidly spreading as climate change, international business transport, and landscape fragmentation impact local ecologies. Since its initial detection in 1999, West Nile virus has shifted from being a novel to an established arbovirus in the United States of America. Subsequently, more than 25,000 cases of West Nile neuro-invasive disease have been diagnosed, cementing West Nile virus as an arbovirus of public health importance. Given its novelty in the United States of America, high-risk ecologies are largely underdefined making targeted population-level public health interventions challenging. Using the Centers for Disease Control and Prevention ArboNET neuroinvasive West Nile virus data from 2000-2021, this study aimed to predict neuroinvasive West Nile virus human cases at the county level for the contiguous USA using a spatio-temporal Bayesian negative binomial regression model. The model includes environmental, climatic, and demographic factors, as well as the distribution of host species. An integrated nested Laplace approximation approach was used to fit our model. To assess model prediction accuracy, annual counts were withheld, forecasted, and compared to observed values. The validated models were then fit to the entire dataset for 2022 predictions. This proof-of-concept mathematical, geospatial modelling approach has proven utility for national health agencies seeking to allocate funding and other resources for local vector control agencies tackling West Nile virus and other notifiable arboviral agents.

摘要

虫媒病毒(节肢动物传播的病毒)是一种新出现的全球健康威胁,随着气候变化、国际商业运输和景观破碎化对当地生态系统的影响,它们正在迅速传播。自 1999 年首次发现以来,西尼罗河病毒已从一种新型病毒转变为美国已确立的虫媒病毒。此后,已诊断出超过 25000 例西尼罗河神经侵袭性疾病病例,这使西尼罗河病毒成为一种具有公共卫生重要性的虫媒病毒。鉴于其在美国的新颖性,高风险生态系统在很大程度上尚未定义,这使得针对特定人群的公共卫生干预措施具有挑战性。本研究利用疾病预防控制中心的 ArboNET 神经侵袭性西尼罗河病毒数据(2000-2021 年),使用时空贝叶斯负二项式回归模型,旨在预测美国连续地区的县级神经侵袭性西尼罗河病毒人类病例。该模型包括环境、气候和人口因素,以及宿主物种的分布。采用集成嵌套拉普拉斯近似方法来拟合我们的模型。为了评估模型预测的准确性,每年都会保留、预测和比较实际值。然后,将验证后的模型应用于 2022 年的整个数据集进行预测。这种基于数学和地理空间模型的概念验证方法已被证明对国家卫生机构具有实用价值,这些机构希望为地方病媒控制机构分配资金和其他资源,以应对西尼罗河病毒和其他应报告的虫媒病毒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f66e/10490885/103d750806a7/pone.0290873.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验