Suppr超能文献

相同的核心节律发生器产生不同的节律运动模式。

The same core rhythm generator underlies different rhythmic motor patterns.

机构信息

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6074, USA.

出版信息

J Neurosci. 2011 Aug 10;31(32):11484-94. doi: 10.1523/JNEUROSCI.1885-11.2011.

Abstract

Rhythmically active motor circuits can generate different activity patterns in response to different inputs. In most systems, however, it is not known whether the same neurons generate the underlying rhythm for each different pattern. Thus far, information regarding the degree of conservation of rhythm generator neurons is limited to a few pacemaker-driven circuits, in most of which the core rhythm generator is unchanged across different output patterns. We are addressing this issue in the network-driven, gastric mill (chewing) circuit in the crab stomatogastric nervous system. We first establish that distinct gastric mill motor patterns are triggered by separate stimulation of two extrinsic input pathways, the ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons. A prominent feature that distinguishes these gastric mill motor patterns is the LG (lateral gastric) protractor motor neuron activity pattern, which is tonic during the VCN rhythm and exhibits fast rhythmic bursting during the POC rhythm. These two motor patterns also differed in their cycle period and some motor neuron phase relationships, duty cycles, and burst durations. Despite the POC and VCN motor patterns being distinct, rhythm generation during each motor pattern required the activity of the same two, reciprocally inhibitory gastric mill neurons [LG, Int1 (interneuron 1)]. Specifically, reversibly hyperpolarizing LG or Int1, but no other gastric mill neuron, delayed the start of the next gastric mill cycle until after the imposed hyperpolarization. Thus, the same circuit neurons can comprise the core rhythm generator during different versions of a network-driven rhythmic motor pattern.

摘要

节律性活动的运动电路可以根据不同的输入产生不同的活动模式。然而,在大多数系统中,尚不清楚相同的神经元是否产生每种不同模式的基础节律。到目前为止,关于节律发生器神经元的保守程度的信息仅限于少数几个起搏器驱动的电路,其中大多数核心节律发生器在不同的输出模式下保持不变。我们正在解决螃蟹口器神经系统中网络驱动的胃磨(咀嚼)电路中的这个问题。我们首先确定了两个不同的胃磨运动模式是由两个独立的外源性输入通路的刺激触发的,即腹侧心脏神经元(VCN)和食管后神经节(POC)神经元。这两个胃磨运动模式的一个显著特征是 LG(侧胃)伸展运动神经元的活动模式,在 VCN 节律期间是紧张的,而在 POC 节律期间表现出快速的节律爆发。这两种运动模式在周期、一些运动神经元相位关系、占空比和爆发持续时间上也有所不同。尽管 POC 和 VCN 运动模式不同,但每种运动模式的节律产生都需要相同的两个相互抑制的胃磨神经元[LG、Int1(中间神经元 1)]的活动。具体来说,可逆地超极化 LG 或 Int1,但不是其他胃磨神经元,会延迟下一个胃磨周期的开始,直到施加的超极化结束。因此,相同的电路神经元可以构成网络驱动的节律性运动模式的核心节律发生器。

相似文献

1
The same core rhythm generator underlies different rhythmic motor patterns.
J Neurosci. 2011 Aug 10;31(32):11484-94. doi: 10.1523/JNEUROSCI.1885-11.2011.
2
State-dependent sensorimotor gating in a rhythmic motor system.
J Neurophysiol. 2017 Nov 1;118(5):2806-2818. doi: 10.1152/jn.00420.2017. Epub 2017 Aug 16.
3
Motor circuit-specific burst patterns drive different muscle and behavior patterns.
J Neurosci. 2013 Jul 17;33(29):12013-29. doi: 10.1523/JNEUROSCI.1060-13.2013.
4
Convergent rhythm generation from divergent cellular mechanisms.
J Neurosci. 2013 Nov 13;33(46):18047-64. doi: 10.1523/JNEUROSCI.3217-13.2013.
6
State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs.
J Neurosci. 2008 Sep 17;28(38):9564-74. doi: 10.1523/JNEUROSCI.3011-08.2008.
7
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
9
Mechanosensory activation of a motor circuit by coactivation of two projection neurons.
J Neurosci. 2004 Jul 28;24(30):6741-50. doi: 10.1523/JNEUROSCI.1682-04.2004.

引用本文的文献

1
Enhanced beta power emerges from simulated parkinsonian primary motor cortex.
NPJ Parkinsons Dis. 2025 Aug 5;11(1):230. doi: 10.1038/s41531-025-01070-4.
3
Multistability of bursting rhythms in a half-center oscillator and the protective effects of synaptic inhibition.
Front Cell Neurosci. 2024 Sep 17;18:1395026. doi: 10.3389/fncel.2024.1395026. eCollection 2024.
4
Switching neuron contributions to second network activity.
J Neurophysiol. 2024 Feb 1;131(2):417-434. doi: 10.1152/jn.00373.2023. Epub 2024 Jan 10.
5
Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs.
J Neurophysiol. 2023 Sep 1;130(3):569-584. doi: 10.1152/jn.00098.2023. Epub 2023 Aug 2.
6
Neural circuit regulation by identified modulatory projection neurons.
Front Neurosci. 2023 Mar 17;17:1154769. doi: 10.3389/fnins.2023.1154769. eCollection 2023.
7
Structural variation between neuropeptide isoforms affects function in the lobster cardiac system.
Gen Comp Endocrinol. 2022 Oct 1;327:114065. doi: 10.1016/j.ygcen.2022.114065. Epub 2022 May 24.
8
Feeding state-dependent modulation of feeding-related motor patterns.
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.
9
Perturbation-specific responses by two neural circuits generating similar activity patterns.
Curr Biol. 2021 Nov 8;31(21):4831-4838.e4. doi: 10.1016/j.cub.2021.08.042. Epub 2021 Sep 9.
10
Neuronal Switching between Single- and Dual-Network Activity via Modulation of Intrinsic Membrane Properties.
J Neurosci. 2021 Sep 15;41(37):7848-7863. doi: 10.1523/JNEUROSCI.0286-21.2021. Epub 2021 Aug 4.

本文引用的文献

1
Gastric and pyloric motor pattern control by a modulatory projection neuron in the intact crab Cancer pagurus.
J Neurophysiol. 2011 Apr;105(4):1671-80. doi: 10.1152/jn.01105.2010. Epub 2011 Feb 16.
2
Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors.
J Neurosci. 2010 Dec 8;30(49):16609-20. doi: 10.1523/JNEUROSCI.3695-10.2010.
3
The interactions between locomotion and respiration.
Prog Brain Res. 2010;187:173-88. doi: 10.1016/B978-0-444-53613-6.00012-5.
4
A role for compromise: synaptic inhibition and electrical coupling interact to control phasing in the leech heartbeat CpG.
Front Behav Neurosci. 2010 Jul 12;4. doi: 10.3389/fnbeh.2010.00038. eCollection 2010.
5
Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
J Neurophysiol. 2010 Sep;104(3):1681-95. doi: 10.1152/jn.00362.2010. Epub 2010 Jul 28.
7
Invertebrate central pattern generator circuits.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 12;365(1551):2329-45. doi: 10.1098/rstb.2009.0270.
8
Suprachiasmatic nucleus: cell autonomy and network properties.
Annu Rev Physiol. 2010;72:551-77. doi: 10.1146/annurev-physiol-021909-135919.
9
Flexibility of motor pattern generation across stimulation conditions by the neonatal rat spinal cord.
J Neurophysiol. 2010 Mar;103(3):1580-90. doi: 10.1152/jn.00961.2009. Epub 2010 Jan 20.
10
Motor outputs in a multitasking network: relative contributions of inputs and experience-dependent network states.
J Neurophysiol. 2009 Dec;102(6):3711-27. doi: 10.1152/jn.00844.2009. Epub 2009 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验