Suppr超能文献

相同的核心节律发生器产生不同的节律运动模式。

The same core rhythm generator underlies different rhythmic motor patterns.

机构信息

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6074, USA.

出版信息

J Neurosci. 2011 Aug 10;31(32):11484-94. doi: 10.1523/JNEUROSCI.1885-11.2011.

Abstract

Rhythmically active motor circuits can generate different activity patterns in response to different inputs. In most systems, however, it is not known whether the same neurons generate the underlying rhythm for each different pattern. Thus far, information regarding the degree of conservation of rhythm generator neurons is limited to a few pacemaker-driven circuits, in most of which the core rhythm generator is unchanged across different output patterns. We are addressing this issue in the network-driven, gastric mill (chewing) circuit in the crab stomatogastric nervous system. We first establish that distinct gastric mill motor patterns are triggered by separate stimulation of two extrinsic input pathways, the ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons. A prominent feature that distinguishes these gastric mill motor patterns is the LG (lateral gastric) protractor motor neuron activity pattern, which is tonic during the VCN rhythm and exhibits fast rhythmic bursting during the POC rhythm. These two motor patterns also differed in their cycle period and some motor neuron phase relationships, duty cycles, and burst durations. Despite the POC and VCN motor patterns being distinct, rhythm generation during each motor pattern required the activity of the same two, reciprocally inhibitory gastric mill neurons [LG, Int1 (interneuron 1)]. Specifically, reversibly hyperpolarizing LG or Int1, but no other gastric mill neuron, delayed the start of the next gastric mill cycle until after the imposed hyperpolarization. Thus, the same circuit neurons can comprise the core rhythm generator during different versions of a network-driven rhythmic motor pattern.

摘要

节律性活动的运动电路可以根据不同的输入产生不同的活动模式。然而,在大多数系统中,尚不清楚相同的神经元是否产生每种不同模式的基础节律。到目前为止,关于节律发生器神经元的保守程度的信息仅限于少数几个起搏器驱动的电路,其中大多数核心节律发生器在不同的输出模式下保持不变。我们正在解决螃蟹口器神经系统中网络驱动的胃磨(咀嚼)电路中的这个问题。我们首先确定了两个不同的胃磨运动模式是由两个独立的外源性输入通路的刺激触发的,即腹侧心脏神经元(VCN)和食管后神经节(POC)神经元。这两个胃磨运动模式的一个显著特征是 LG(侧胃)伸展运动神经元的活动模式,在 VCN 节律期间是紧张的,而在 POC 节律期间表现出快速的节律爆发。这两种运动模式在周期、一些运动神经元相位关系、占空比和爆发持续时间上也有所不同。尽管 POC 和 VCN 运动模式不同,但每种运动模式的节律产生都需要相同的两个相互抑制的胃磨神经元[LG、Int1(中间神经元 1)]的活动。具体来说,可逆地超极化 LG 或 Int1,但不是其他胃磨神经元,会延迟下一个胃磨周期的开始,直到施加的超极化结束。因此,相同的电路神经元可以构成网络驱动的节律性运动模式的核心节律发生器。

相似文献

2
State-dependent sensorimotor gating in a rhythmic motor system.节律性运动系统中的状态依赖性感觉运动门控
J Neurophysiol. 2017 Nov 1;118(5):2806-2818. doi: 10.1152/jn.00420.2017. Epub 2017 Aug 16.
4
Convergent rhythm generation from divergent cellular mechanisms.从不同的细胞机制中产生会聚节律。
J Neurosci. 2013 Nov 13;33(46):18047-64. doi: 10.1523/JNEUROSCI.3217-13.2013.

引用本文的文献

4
Switching neuron contributions to second network activity.转换神经元对第二网络活动的贡献。
J Neurophysiol. 2024 Feb 1;131(2):417-434. doi: 10.1152/jn.00373.2023. Epub 2024 Jan 10.
6
8
Feeding state-dependent modulation of feeding-related motor patterns.摄食状态依赖性调制摄食相关运动模式。
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.

本文引用的文献

3
The interactions between locomotion and respiration.运动与呼吸的相互作用。
Prog Brain Res. 2010;187:173-88. doi: 10.1016/B978-0-444-53613-6.00012-5.
7
Invertebrate central pattern generator circuits.无脊椎动物中枢模式生成器电路。
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 12;365(1551):2329-45. doi: 10.1098/rstb.2009.0270.
8
Suprachiasmatic nucleus: cell autonomy and network properties.视交叉上核:细胞自主性和网络特性。
Annu Rev Physiol. 2010;72:551-77. doi: 10.1146/annurev-physiol-021909-135919.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验