文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

溶解氧对柠檬酸钠包裹的银纳米颗粒聚集动力学的影响。

Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles.

机构信息

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Environ Pollut. 2011 Dec;159(12):3757-62. doi: 10.1016/j.envpol.2011.07.013. Epub 2011 Aug 10.


DOI:10.1016/j.envpol.2011.07.013
PMID:21835520
Abstract

Aggregation, an important environmental behavior of silver nanoparticles (AgNPs) influences their bioavailability and cytotoxicity. The work studied the influence of dissolved oxygen (DO) or the redox potential on the stability of AgNPs in aqueous environments. This study employed time-resolved dynamic light scattering (TR-DLS) to investigate the aggregation kinetics of citrate-coated AgNPs. Our results demonstrated that when DO was present, the aggregation rates became much faster (e.g., 3-8 times) than those without DO. The hydrodynamic sizes of AgNPs had a linear growth within the initial 4-6 h and after the linear growth, the hydrodynamic sizes became random for AgNPs in the presence of DO, whereas in the absence of DO the hydrodynamic sizes grew smoothly and steadily. Furthermore, the effects of primary particles sizes (20, 40, and 80 nm) and initial concentrations (300 and 600 μg/L) of AgNPs on aggregation kinetics were also investigated.

摘要

聚集作用是银纳米粒子(AgNPs)的一种重要环境行为,影响其生物利用度和细胞毒性。本工作研究了溶解氧(DO)或氧化还原电位对 AgNPs 在水相环境中稳定性的影响。该研究采用时间分辨动态光散射(TR-DLS)技术研究了柠檬酸钠包覆的 AgNPs 的聚集动力学。结果表明,当存在 DO 时,AgNPs 的聚集速率比没有 DO 时快得多(例如,快 3-8 倍)。AgNPs 的水动力尺寸在最初的 4-6 小时内呈线性增长,在线性增长后,在有 DO 的情况下,AgNPs 的水动力尺寸变得随机,而在没有 DO 的情况下,AgNPs 的水动力尺寸平稳稳定地增长。此外,还研究了 AgNPs 的初级粒子尺寸(20、40 和 80nm)和初始浓度(300 和 600μg/L)对聚集动力学的影响。

相似文献

[1]
Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles.

Environ Pollut. 2011-8-10

[2]
Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics.

Environ Sci Technol. 2011-4-22

[3]
Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.

J Chromatogr A. 2011-3-24

[4]
Aggregation and dissolution of silver nanoparticles in natural surface water.

Environ Sci Technol. 2012-4-25

[5]
Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.

Environ Sci Technol. 2010-2-15

[6]
Rapid, reversible preparation of size-controllable silver nanoplates by chemical redox.

Langmuir. 2010-7-20

[7]
Size-dependent uptake of silver nanoparticles in Daphnia magna.

Environ Sci Technol. 2012-9-25

[8]
Citrate-Coated Silver Nanoparticles Interactions with Effluent Organic Matter: Influence of Capping Agent and Solution Conditions.

Langmuir. 2015-8-18

[9]
Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

Environ Pollut. 2017-7-14

[10]
Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions.

Environ Sci Technol. 2011-6-1

引用本文的文献

[1]
Influence of silver ion release on the inactivation of antibiotic resistant bacteria using light-activated silver nanoparticles.

Mater Adv. 2022-11-8

[2]
Solvent effects on the kinetics of 4-nitrophenol reduction by NaBH in the presence of Ag and Au nanoparticles.

React Chem Eng. 2022-4-29

[3]
Gallic acid-coated silver nanoparticles as perspective drug nanocarriers: bioanalytical study.

Anal Bioanal Chem. 2022-7

[4]
Simultaneous Influence of Gradients in Natural Organic Matter and Abiotic Parameters on the Behavior of Silver Nanoparticles in the Transition Zone from Freshwater to Saltwater Environments.

Nanomaterials (Basel). 2022-1-17

[5]
Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective.

J Cancer Prev. 2021-6-30

[6]
Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review.

Environ Sci Pollut Res Int. 2019-1-23

[7]
Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.

Environ Sci Pollut Res Int. 2018-9-28

[8]
Spatial and temporal trends in the fate of silver nanoparticles in a whole-lake addition study.

PLoS One. 2018-8-15

[9]
Effects of Graphene Oxide Nanoparticles on the Immune System Biomarkers Produced by RAW 264.7 and Human Whole Blood Cell Cultures.

Nanomaterials (Basel). 2018-2-24

[10]
Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments.

Nanomaterials (Basel). 2017-1-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索