Suppr超能文献

理解 SHAPE 指导的 RNA 结构建模中的错误。

Understanding the errors of SHAPE-directed RNA structure modeling.

机构信息

Department of Biochemistry, Stanford University, Stanford, California 94305, USA.

出版信息

Biochemistry. 2011 Sep 20;50(37):8049-56. doi: 10.1021/bi200524n. Epub 2011 Aug 25.

Abstract

Single-nucleotide-resolution chemical mapping for structured RNA is being rapidly advanced by new chemistries, faster readouts, and coupling to computational algorithms. Recent tests have shown that selective 2'-hydroxyl acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in modeling the helices of RNA secondary structure. Here, we benchmark the method using six molecules for which crystallographic data are available: tRNA(phe) and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs gave an overall false negative rate (FNR) of 17% and a false discovery rate (FDR) of 21%, with at least one helix prediction error in five of the six cases. Extensive variations of data processing, normalization, and modeling parameters did not significantly mitigate modeling errors. Only one varation, filtering out data collected with deoxyinosine triphosphate during primer extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual structure modeling errors are explained by the insufficient information content of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping analysis. Beyond these benchmark cases, bootstrapping suggests a low level of confidence (<50%) in the majority of helices in a previously proposed SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA modeling is not always unambiguous, and helix-by-helix confidence estimates, as described herein, may be critical for interpreting results from this powerful methodology.

摘要

单核苷酸分辨率的化学作图技术在新化学、更快的读取和与计算算法的耦合方面正在迅速发展。最近的测试表明,通过引物延伸的选择性 2'-羟基酰化(SHAPE)可以在建模 RNA 二级结构的螺旋方面提供接近零的错误率(0-2%)。在这里,我们使用六个具有晶体学数据的分子来对该方法进行基准测试:来自大肠杆菌的 tRNA(phe)和 5S rRNA、四膜虫 I 类核酶的 P4-P6 结构域,以及结合了腺嘌呤、环二鸟苷酸和甘氨酸的核酶开关的配体结合结构域。对这些高度结构化的 RNA 的 SHAPE 定向建模给出了 17%的总体假阴性率(FNR)和 21%的假发现率(FDR),在六个案例中有五个案例中至少有一个螺旋预测错误。数据处理、归一化和建模参数的广泛变化并没有显著减轻建模错误。只有一种变化,即过滤掉引物延伸过程中用脱氧肌苷三磷酸收集的数据,才有适度的改善(FNR = 12%,FDR = 14%)。通过非参数自举分析评估,这些 RNA 的 SHAPE 数据的信息量不足,解释了剩余的结构建模错误。超出这些基准案例,自举表明在之前提出的 HIV-1 RNA 基因组的 SHAPE 定向模型中,大多数螺旋的置信度较低(<50%)。因此,SHAPE 定向的 RNA 建模并不总是明确的,如本文所述的螺旋对螺旋置信度估计对于解释该强大方法的结果可能至关重要。

相似文献

1
Understanding the errors of SHAPE-directed RNA structure modeling.
Biochemistry. 2011 Sep 20;50(37):8049-56. doi: 10.1021/bi200524n. Epub 2011 Aug 25.
2
Principles for understanding the accuracy of SHAPE-directed RNA structure modeling.
Biochemistry. 2013 Jan 29;52(4):588-95. doi: 10.1021/bi300755u. Epub 2013 Jan 14.
3
Statistical analysis of SHAPE-directed RNA secondary structure modeling.
Biochemistry. 2013 Jan 29;52(4):596-9. doi: 10.1021/bi300756s. Epub 2013 Jan 14.
5
The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
RNA. 1998 Sep;4(9):1134-53. doi: 10.1017/s1355838298980566.
7
Crystallization and structure analysis of Thermus flavus 5S rRNA helix B.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1700-3. doi: 10.1107/s090744490201421x. Epub 2002 Sep 26.
10
Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference.
Biochemistry. 2012 Sep 11;51(36):7037-9. doi: 10.1021/bi3008802. Epub 2012 Aug 29.

引用本文的文献

1
Comprehensive analysis of Saccharomyces cerevisiae intron structures in vivo.
Nat Struct Mol Biol. 2025 Jun 5. doi: 10.1038/s41594-025-01565-x.
2
Consistent features observed in structural probing data of eukaryotic RNAs.
NAR Genom Bioinform. 2025 Jan 30;7(1):lqaf001. doi: 10.1093/nargab/lqaf001. eCollection 2025 Mar.
3
Tertiary folds of the SL5 RNA from the 5' proximal region of SARS-CoV-2 and related coronaviruses.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2320493121. doi: 10.1073/pnas.2320493121. Epub 2024 Mar 1.
4
Tertiary folds of the SL5 RNA from the 5' proximal region of SARS-CoV-2 and related coronaviruses.
bioRxiv. 2023 Nov 27:2023.11.22.567964. doi: 10.1101/2023.11.22.567964.
5
Role of RNA Domain Structure and Orientation in the Coxsackievirus B3 Virulence Phenotype.
J Virol. 2023 May 31;97(5):e0044823. doi: 10.1128/jvi.00448-23. Epub 2023 Apr 19.
6
Structural analysis of MALAT1 long noncoding RNA in cells and in evolution.
RNA. 2023 May;29(5):691-704. doi: 10.1261/rna.079388.122. Epub 2023 Feb 15.
7
Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations.
ACS Phys Chem Au. 2022 Oct 4;3(1):30-43. doi: 10.1021/acsphyschemau.2c00032. eCollection 2023 Jan 25.
8
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication.
Microbiol Mol Biol Rev. 2022 Sep 21;86(3):e0005721. doi: 10.1128/mmbr.00057-21. Epub 2022 Jul 7.
10
Sieving RNA 3D Structures with SHAPE and Evaluating Mechanisms Driving Sequence-Dependent Reactivity Bias.
J Phys Chem B. 2021 Feb 4;125(4):1156-1166. doi: 10.1021/acs.jpcb.0c11365. Epub 2021 Jan 26.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
A two-dimensional mutate-and-map strategy for non-coding RNA structure.
Nat Chem. 2011 Oct 30;3(12):954-62. doi: 10.1038/nchem.1176.
3
Modeling and automation of sequencing-based characterization of RNA structure.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11069-74. doi: 10.1073/pnas.1106541108. Epub 2011 Jun 3.
4
HiTRACE: high-throughput robust analysis for capillary electrophoresis.
Bioinformatics. 2011 Jul 1;27(13):1798-805. doi: 10.1093/bioinformatics/btr277. Epub 2011 May 10.
5
Structural basis of cooperative ligand binding by the glycine riboswitch.
Chem Biol. 2011 Mar 25;18(3):293-8. doi: 10.1016/j.chembiol.2011.01.013.
6
A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA.
RNA. 2011 Mar;17(3):522-34. doi: 10.1261/rna.2516311. Epub 2011 Jan 14.
7
Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch .
Biochemistry. 2010 Aug 31;49(34):7351-9. doi: 10.1021/bi100671e.
9
The crystal structure of unmodified tRNAPhe from Escherichia coli.
Nucleic Acids Res. 2010 Jul;38(12):4154-62. doi: 10.1093/nar/gkq133. Epub 2010 Mar 4.
10
Atomic accuracy in predicting and designing noncanonical RNA structure.
Nat Methods. 2010 Apr;7(4):291-4. doi: 10.1038/nmeth.1433. Epub 2010 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验