Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
Inorg Chem. 2011 Oct 17;50(20):9794-803. doi: 10.1021/ic200046k. Epub 2011 Aug 15.
(51)V solid-state NMR (SSNMR) studies of a series of noninnocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that (51)V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic (51)V NMR chemical shifts cover a wide range from -200 to 400 ppm in solution and from -219 to 530 ppm in the solid state. A linear correlation of (51)V NMR isotropic solution and solid-state chemical shifts of complexes containing noninnocent ligands is observed. These experimental results provide the information needed for the application of (51)V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems and, in particular, those containing noninnocent ligands and that have chemical shifts outside the populated range of -300 to -700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from (51)V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (density functional theory) calculations of NMR parameters for [VO(hshed)(Cat)] yield a (51)V chemical shift anisotropy tensor in reasonable agreement with the experimental results, but surprisingly the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron-donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron-withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because (51)V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox-active complexes that exhibit coordination chemistry similar to that of the vanadium catechol complexes.
(51)V 固态 NMR(SSNMR)研究了一系列非配位的钒(V)儿茶酚配合物,以评估(51)V NMR 观测值、四极和化学位移各向异性以及这些化合物的电子结构是否可用于表征这些化合物。这些研究中描述的钒(V)儿茶酚配合物具有相对较小的四极耦合常数,其范围惊人地小,为 3.4 至 4.2MHz。另一方面,在溶液中,各向同性(51)V NMR 化学位移从-200 到 400ppm,在固态中从-219 到 530ppm。观察到含有非配位配体的配合物的(51)V NMR 各向同性溶液和固态化学位移呈线性相关。这些实验结果为(51)V SSNMR 光谱在表征各种含钒系统的电子性质方面的应用提供了所需的信息,特别是那些含有非配位配体且化学位移超出-300 至-700ppm 范围的系统。本报告中介绍的研究表明,覆盖窄值范围的小四极耦合反映了对称的电子电荷分布,这些配合物的电子电荷分布也相似。这些四极相互作用参数本身不足以捕捉这些配合物丰富的电子结构。相比之下,(51)V SSNMR 实验可获得的化学位移各向异性张量元素是这些化合物中电子分布和轨道占据的细微差异的高度敏感探针。对于[VO(hshed)(Cat)],通过量子化学(密度泛函理论)计算 NMR 参数得到的(51)V 化学位移各向异性张量与实验结果吻合较好,但令人惊讶的是,计算得到的四极耦合常数明显大于实验值。研究表明,儿茶酚配体被供电子基团取代会导致 HOMO-LUMO 能隙增大,并可直接导致钒儿茶酚配合物向场移动。相比之下,儿茶酚配体被吸电子基团取代会导致 HOMO-LUMO 能隙减小,并可直接导致配合物向场移动。在这项工作中使用了钒儿茶酚配合物,因为(51)V 是一个半整数的四极核,其 NMR 观测值对局部环境高度敏感。然而,结果是一般性的,可以扩展到其他表现出与钒儿茶酚配合物类似配位化学的氧化还原活性配合物。