CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France.
Nat Chem. 2010 Jun;2(6):466-71. doi: 10.1038/nchem.650. Epub 2010 May 2.
XH/pi interactions make important contributions to biomolecular structure and function. These weakly polar interactions, involving pi-system acceptor groups, are usually identified from the three-dimensional structures of proteins. Here, nuclear magnetic resonance spectroscopy has been used to directly detect methyl/pi (Me/pi) interactions in proteins at atomic resolution. Density functional theory calculations predict the existence of weak scalar (J) couplings between nuclei involved in Me/pi interactions. Using an optimized isotope-labelling strategy, these J couplings have been detected in proteins using nuclear magnetic resonance spectroscopy. The resulting spectra provide direct experimental evidence of Me/pi interactions in proteins and allow a simple and unambiguous assignment of donor and acceptor groups. The use of nuclear magnetic resonance spectroscopy is an elegant way to identify and experimentally characterize Me/pi interactions in proteins without the need for arbitrary geometric descriptions or pre-existing three-dimensional structures.
XH/pi 相互作用对生物分子结构和功能有重要贡献。这些弱极性相互作用涉及 pi 系统受体基团,通常可以从蛋白质的三维结构中识别出来。在这里,核磁共振波谱学已被用于在原子分辨率下直接检测蛋白质中的甲基/pi(Me/pi)相互作用。密度泛函理论计算预测了涉及 Me/pi 相互作用的原子核之间存在弱标量(J)耦合。使用优化的同位素标记策略,已经使用核磁共振波谱法在蛋白质中检测到这些 J 耦合。所得光谱为蛋白质中 Me/pi 相互作用提供了直接的实验证据,并允许对供体和受体基团进行简单且明确的分配。核磁共振波谱学的使用是一种优雅的方法,可以在不需要任意几何描述或预先存在的三维结构的情况下识别和实验表征蛋白质中的 Me/pi 相互作用。