Okimoto Noriaki, Otsuka Takao, Hirano Yoshinori, Taiji Makoto
Laboratory for Computational Molecular Design, Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
ACS Omega. 2018 Apr 24;3(4):4475-4485. doi: 10.1021/acsomega.8b00175. eCollection 2018 Apr 30.
In computational drug discovery, ranking a series of compound analogues in the order that is consistent with the experimental binding affinities remains a challenge. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics (MM)-based force fields, although they cannot completely describe protein-ligand interactions. By contrast, quantum mechanics (QM) calculations play an important role in understanding the protein-ligand interactions; however, their huge computational costs hinder their application in drug discovery. In this study, we have evaluated the ability to rank the binding affinities of tankyrase 2 ligands by combining both MM and QM calculations. Our computational approach uses the protein-ligand binding energies obtained from a cost-effective multilayer fragment molecular orbital (MFMO) method combined with the solvation energy obtained from the MM-Poisson-Boltzmann/surface area (MM-PB/SA) method to predict the binding affinity. This approach enabled us to rank tankyrase 2 inhibitor analogues, outperforming several MM-based methods, including rescoring by molecular docking and the MM-PB/SA method alone. Our results show that this computational approach using the MFMO method is a promising tool for predicting the rank order of the binding affinities of inhibitor analogues.
在计算药物发现中,按照与实验结合亲和力一致的顺序对一系列化合物类似物进行排序仍然是一项挑战。许多可用于评估结合亲和力的计算方法都采用了基于分子力学(MM)的力场,尽管它们无法完全描述蛋白质-配体相互作用。相比之下,量子力学(QM)计算在理解蛋白质-配体相互作用方面发挥着重要作用;然而,其巨大的计算成本阻碍了它们在药物发现中的应用。在本研究中,我们通过结合MM和QM计算来评估对端锚聚合酶2配体结合亲和力进行排序的能力。我们的计算方法使用从具有成本效益的多层片段分子轨道(MFMO)方法获得的蛋白质-配体结合能,并结合从MM-泊松-玻尔兹曼/表面积(MM-PB/SA)方法获得的溶剂化能来预测结合亲和力。这种方法使我们能够对端锚聚合酶2抑制剂类似物进行排序,优于几种基于MM的方法,包括通过分子对接重新评分和单独的MM-PB/SA方法。我们的结果表明,这种使用MFMO方法的计算方法是预测抑制剂类似物结合亲和力排序的一种有前途的工具。