Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
Biophys J. 2011 Aug 17;101(4):757-63. doi: 10.1016/j.bpj.2011.06.047.
The interplay between hormone signaling and gene regulatory networks is instrumental in promoting the development of living organisms. In particular, plants have evolved mechanisms to sense gravity and orient themselves accordingly. Here, we present a mathematical model that reproduces plant gravitropic responses based on known molecular genetic interactions for auxin signaling coupled with a physical description of plant reorientation. The model allows one to analyze the spatiotemporal dynamics of the system, triggered by an auxin gradient that induces differential growth of the plant with respect to the gravity vector. Our model predicts two important features with strong biological implications: 1), robustness of the regulatory circuit as a consequence of integral control; and 2), a higher degree of plasticity generated by the molecular interplay between two classes of hormones. Our model also predicts the ability of gibberellins to modulate the tropic response and supports the integration of the hormonal role at the level of gene regulation.
激素信号与基因调控网络的相互作用对于促进生物的发育至关重要。特别是,植物已经进化出感知重力并相应地调整自身方向的机制。在这里,我们提出了一个数学模型,该模型基于已知的生长素信号分子遗传相互作用,并结合植物重新定向的物理描述,再现了植物的向重力性反应。该模型允许分析由生长素梯度引起的系统的时空动力学,该生长素梯度引起植物相对于重力向量的差异生长。我们的模型预测了两个具有重要生物学意义的重要特征:1),由于积分控制,调节回路具有鲁棒性;2),两种激素之间的分子相互作用产生了更高程度的可塑性。我们的模型还预测了赤霉素调节向性反应的能力,并支持激素作用在基因调控水平上的整合。