Suppr超能文献

使用多层感知器-遗传算法对响应真菌诱导子的细胞培养中生长和紫杉醇生物合成进行数学建模

Mathematical Modeling of Growth and Paclitaxel Biosynthesis in Cell Culture Responding to Fungal Elicitors Using Multilayer Perceptron-Genetic Algorithm.

作者信息

Salehi Mina, Farhadi Siamak, Moieni Ahmad, Safaie Naser, Ahmadi Hamed

机构信息

Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

出版信息

Front Plant Sci. 2020 Aug 11;11:1148. doi: 10.3389/fpls.2020.01148. eCollection 2020.

Abstract

Paclitaxel is the top-selling anticancer medicine in the world. culture of has been made known as a promising and inexpensive strategy for producing paclitaxel. Fungal elicitors have been named as the most efficient strategy for enhancing the biosynthesis of secondary metabolites in plant cell culture. In this study, endophytic fungal strain HEF was isolated from and identified as . cell suspension culture (CSC) elicited with cell extract (CE) and culture filtrate (CF) derived from strain HEF, either individually or combined treatment, in mid and late log phase was processed for modeling and optimizing growth and paclitaxel biosynthesis regarding CE and CF concentration levels, elicitor adding day, and CSC harvesting time using multilayer perceptron-genetic algorithm (MLP-GA). The results displayed higher accuracy of MLP-GA models (0.89-0.95) than regression models (0.56-0.85). The great accordance between the predicted and observed values of output variables (dry weight, intracellular, extracellular and total yield of paclitaxel, and also extracellular paclitaxel portion) for both training and testing subsets supported the excellent performance of developed MLP-GA models. MLP-GA method presented a promising tool for selecting the optimal conditions for maximum paclitaxel biosynthesis. An Excel estimator, HCC-paclitaxel, was designed based on MLP-GA model as an easy-to-use tool for predicting paclitaxel biosynthesis in CSC responding to fungal elicitors.

摘要

紫杉醇是全球最畅销的抗癌药物。红豆杉细胞培养已成为一种有前景且成本低廉的紫杉醇生产策略。真菌诱导子被认为是增强植物细胞培养中次生代谢产物生物合成的最有效策略。在本研究中,从红豆杉中分离出内生真菌菌株HEF,并鉴定为[具体菌种]。用来自菌株HEF的细胞提取物(CE)和培养滤液(CF)单独或联合处理处于对数中期和后期的细胞悬浮培养物(CSC),使用多层感知器 - 遗传算法(MLP - GA)对CE和CF浓度水平、诱导子添加日以及CSC收获时间进行建模,以优化生长和紫杉醇生物合成。结果显示,MLP - GA模型(0.89 - 0.95)的准确性高于回归模型(0.56 - 0.85)。训练子集和测试子集的输出变量(干重、紫杉醇的细胞内、细胞外和总产量以及细胞外紫杉醇部分)的预测值与观测值高度一致,支持了所开发的MLP - GA模型的优异性能。MLP - GA方法为选择最大紫杉醇生物合成的最佳条件提供了一个有前景的工具。基于MLP - GA模型设计了一个Excel估算器HCC - 紫杉醇,作为预测响应真菌诱导子的红豆杉CSC中紫杉醇生物合成的易于使用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/379c/7432144/10a5b3e5be8c/fpls-11-01148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验