Suppr超能文献

利用 portal 图像 - DRR 配准软件应用程序检测患者摆位误差。

Detection of patient setup errors with a portal image - DRR registration software application.

机构信息

Hokkaido University Graduate School of Medicine, Sapporo, Japan.

出版信息

J Appl Clin Med Phys. 2011 Feb 18;12(3):3492. doi: 10.1120/jacmp.v12i3.3492.

Abstract

The purpose of this study was to evaluate a custom portal image - digitally reconstructed radiograph (DRR) registration software application. The software works by transforming the portal image into the coordinate space of the DRR image using three control points placed on each image by the user, and displaying the fused image. In order to test statistically that the software actually improves setup error estimation, an intra- and interobserver phantom study was performed. Portal images of anthropomorphic thoracic and pelvis phantoms with virtually placed irradiation fields at known setup errors were prepared. A group of five doctors was first asked to estimate the setup errors by examining the portal and DRR image side-by-side, not using the software. A second group of four technicians then estimated the same set of images using the registration software. These two groups of human subjects were then compared with an auto-registration feature of the software, which is based on the mutual information between the portal and DRR images. For the thoracic case, the average distance between the actual setup error and the estimated error was 4.3 ± 3.0 mm for doctors using the side-by-side method, 2.1 ± 2.4 mm for technicians using the registration method, and 0.8 ± 0.4mm for the automatic algorithm. For the pelvis case, the average distance between the actual setup error and estimated error was 2.0 ± 0.5 mm for the doctors using the side-by-side method, 2.5 ± 0.4 mm for technicians using the registration method, and 2.0 ± 1.0 mm for the automatic algorithm. The ability of humans to estimate offset values improved statistically using our software for the chest phantom that we tested. Setup error estimation was further improved using our automatic error estimation algorithm. Estimations were not statistically different for the pelvis case. Consistency improved using the software for both the chest and pelvis phantoms. We also tested the automatic algorithm with a database of over 5,000 clinical cases from our hospital. The algorithm performed well for head and breast but performed poorly for pelvis cases, probably due to lack of contrast in the megavoltage portal image. The software incorporates an original algorithm to fuse portal and DRR images, which we describe in detail. The offset optimization algorithm used in the automatic mode of operation is also unique, and may be useful if the contrast of the portal images can be improved.

摘要

本研究旨在评估一款定制的射野影像-数字重建影像(DRR)配准软件应用程序。该软件通过使用用户在每张图像上放置的三个控制点,将射野影像转换到 DRR 影像的坐标空间中,并显示融合影像。为了从统计学上验证该软件确实能改善摆位误差估计,我们进行了一项内在和外在观察者的体模研究。准备了具有虚拟照射野的胸和骨盆体模的射野影像,这些照射野的摆位误差已知。首先,一组五名医生在不使用软件的情况下,通过并排检查射野和 DRR 图像来估计摆位误差。然后,第二组四名技术员使用配准软件来估计同一组图像。将这两组人类观察者与软件的自动配准功能进行比较,该功能基于射野和 DRR 图像之间的互信息。对于胸部病例,使用并排方法的医生估计的实际摆位误差与估计误差之间的平均距离为 4.3 ± 3.0mm,使用注册方法的技术员为 2.1 ± 2.4mm,自动算法为 0.8 ± 0.4mm。对于骨盆病例,使用并排方法的医生估计的实际摆位误差与估计误差之间的平均距离为 2.0 ± 0.5mm,使用注册方法的技术员为 2.5 ± 0.4mm,自动算法为 2.0 ± 1.0mm。我们的软件能提高人类估计偏移值的能力,这在我们测试的胸部体模中得到了统计学上的证明。使用我们的自动误差估计算法进一步提高了摆位误差估计的准确性。对于骨盆病例,估计结果在统计学上没有差异。使用该软件可提高胸和骨盆体模的一致性。我们还用来自我们医院的超过 5000 例临床病例的数据库测试了自动算法。该算法对头和乳房的效果很好,但对骨盆病例的效果很差,可能是由于兆伏级射野影像对比度不足所致。该软件包含一个原始的算法来融合射野和 DRR 图像,我们对此进行了详细描述。自动模式下使用的偏移优化算法也是独特的,如果能改善射野影像的对比度,可能会很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1422/5718652/0284abc33ab2/ACM2-12-002-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验