Suppr超能文献

基于结构的 B 细胞表位预测模型:结合局部和全局特征。

A Structure-Based B-cell Epitope Prediction Model Through Combing Local and Global Features.

机构信息

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China.

School of Life Sciences, Zhengzhou University, Zhengzhou, China.

出版信息

Front Immunol. 2022 Jul 1;13:890943. doi: 10.3389/fimmu.2022.890943. eCollection 2022.

Abstract

B-cell epitopes (BCEs) are a set of specific sites on the surface of an antigen that binds to an antibody produced by B-cell. The recognition of BCEs is a major challenge for drug design and vaccines development. Compared with experimental methods, computational approaches have strong potential for BCEs prediction at much lower cost. Moreover, most of the currently methods focus on using local information around target residue without taking the global information of the whole antigen sequence into consideration. We propose a novel deep leaning method through combing local features and global features for BCEs prediction. In our model, two parallel modules are built to extract local and global features from the antigen separately. For local features, we use Graph Convolutional Networks (GCNs) to capture information of spatial neighbors of a target residue. For global features, Attention-Based Bidirectional Long Short-Term Memory (Att-BLSTM) networks are applied to extract information from the whole antigen sequence. Then the local and global features are combined to predict BCEs. The experiments show that the proposed method achieves superior performance over the state-of-the-art BCEs prediction methods on benchmark datasets. Also, we compare the performance differences between data with or without global features. The experimental results show that global features play an important role in BCEs prediction. Our detailed case study on the BCEs prediction for SARS-Cov-2 receptor binding domain confirms that our method is effective for predicting and clustering true BCEs.

摘要

B 细胞表位 (BCEs) 是抗原表面与 B 细胞产生的抗体结合的一组特定位点。BCEs 的识别是药物设计和疫苗开发的主要挑战。与实验方法相比,计算方法具有在更低成本下预测 BCEs 的强大潜力。此外,目前大多数方法主要关注利用目标残基周围的局部信息,而不考虑整个抗原序列的全局信息。我们提出了一种新的深度学习方法,通过结合局部特征和全局特征来预测 BCEs。在我们的模型中,构建了两个平行的模块,分别从抗原中提取局部特征和全局特征。对于局部特征,我们使用图卷积网络 (GCNs) 来捕获目标残基的空间邻居的信息。对于全局特征,应用基于注意力的双向长短期记忆网络 (Att-BLSTM) 从整个抗原序列中提取信息。然后将局部特征和全局特征结合起来预测 BCEs。实验表明,该方法在基准数据集上优于最先进的 BCEs 预测方法。此外,我们还比较了具有或不具有全局特征的数据的性能差异。实验结果表明,全局特征在 BCEs 预测中起着重要作用。我们对 SARS-CoV-2 受体结合域的 BCEs 预测的详细案例研究证实了我们的方法在预测和聚类真正的 BCEs 方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c21f/9283778/bcf857febe9b/fimmu-13-890943-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验