Calfon Marcella A, Rosenthal Amir, Mallas Georgios, Mauskapf Adam, Nudelman R Nika, Ntziachristos Vasilis, Jaffer Farouc A
Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
J Vis Exp. 2011 Aug 4(54):2257. doi: 10.3791/2257.
The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.(1) Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.(4) While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.(2) The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis. Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target-to-background ratios due to reduced autofluorescence in the NIR window. Imaging within the NIR 'window' can substantially improve the potential for in vivo imaging.(2,5) Inflammatory cysteine proteases have been well studied using activatable NIRF probes(10), and play important roles in atherogenesis. Via degradation of the extracellular matrix, cysteine proteases contribute importantly to the progression and complications of atherosclerosis(8). In particular, the cysteine protease, cathepsin B, is highly expressed and colocalizes with macrophages in experimental murine, rabbit, and human atheromata.(3,6,7) In addition, cathepsin B activity in plaques can be sensed in vivo utilizing a previously described 1-D intravascular near-infrared fluorescence technology(6), in conjunction with an injectable nanosensor agent that consists of a poly-lysine polymer backbone derivatized with multiple NIR fluorochromes (VM110/Prosense750, ex/em 750/780nm, VisEn Medical, Woburn, MA) that results in strong intramolecular quenching at baseline.(10) Following targeted enzymatic cleavage by cysteine proteases such as cathepsin B (known to colocalize with plaque macrophages), the fluorochromes separate, resulting in substantial amplification of the NIRF signal. Intravascular detection of NIR fluorescence signal by the utilized novel 2D intravascular NIRF catheter now enables high-resolution, geometrically accurate in vivo detection of cathepsin B activity in inflamed plaque. In vivo molecular imaging of atherosclerosis using catheter-based 2D NIRF imaging, as opposed to a prior 1-D spectroscopic approach,(6) is a novel and promising tool that utilizes augmented protease activity in macrophage-rich plaque to detect vascular inflammation.(11,12) The following research protocol describes the use of an intravascular 2-dimensional NIRF catheter to image and characterize plaque structure utilizing key aspects of plaque biology. It is a translatable platform that when integrated with existing clinical imaging technologies including angiography and intravascular ultrasound (IVUS), offers a unique and novel integrated multimodal molecular imaging technique that distinguishes inflammatory atheromata, and allows detection of intravascular NIRF signals in human-sized coronary arteries.
血管对损伤的反应是一种精心编排的炎症反应,由血管壁内巨噬细胞的积聚引发,导致富含脂质的管腔内斑块积聚、平滑肌细胞增殖以及血管腔逐渐变窄。这种易破裂的易损斑块的形成是大多数急性心肌梗死病例的基础。复杂的分子和细胞炎症级联反应是由T淋巴细胞和巨噬细胞的募集及其对内皮细胞和平滑肌细胞的旁分泌作用所协调的。(1)动脉粥样硬化的分子成像已发展成为一种重要的临床和研究工具,能够在体内可视化炎症和其他生物学过程。最近的几个例子证明了检测患者高危斑块以及评估动脉粥样硬化药物治疗效果的能力。(4)虽然许多分子成像方法(特别是MRI和PET)可以对诸如颈动脉等大血管的生物学方面进行成像,但用于冠状动脉成像的选择却很少。(2)高分辨率光学成像策略的出现,特别是近红外荧光(NIRF),与可激活的荧光探针相结合,提高了灵敏度,并导致了新的血管内策略的发展,以改善人类冠状动脉粥样硬化的生物学成像。近红外荧光(NIRF)分子成像利用具有特定带宽(650 - 900 nm)的激发光作为光子源,当将其传递给光学造影剂或荧光探针时,会在近红外窗口发射荧光,可使用适当的发射滤光片和高灵敏度电荷耦合相机进行检测。与可见光不同,近红外光能够深入穿透组织,被血红蛋白、脂质和水等内源性光子吸收体的衰减明显较小,并且由于近红外窗口中自发荧光的减少而实现高的靶标与背景比率。在近红外“窗口”内成像可以显著提高体内成像的潜力。(2,5)使用可激活的NIRF探针已经对炎症性半胱氨酸蛋白酶进行了充分研究(10),并且它们在动脉粥样硬化的发生发展中起重要作用。通过降解细胞外基质,半胱氨酸蛋白酶对动脉粥样硬化的进展和并发症有重要贡献(8)。特别是,半胱氨酸蛋白酶组织蛋白酶B在实验性小鼠、兔子和人类动脉粥样硬化斑块中高度表达并与巨噬细胞共定位。(3,6,7)此外,利用先前描述的一维血管内近红外荧光技术(6),结合一种可注射的纳米传感器试剂,可以在体内检测斑块中的组织蛋白酶B活性,该试剂由用多个近红外荧光染料(VM110/Prosense750,激发/发射波长750/780nm,VisEn Medical,沃本,马萨诸塞州)衍生化的聚赖氨酸聚合物主链组成,在基线时会导致强烈的分子内猝灭。(1)在诸如组织蛋白酶B(已知与斑块巨噬细胞共定位)等半胱氨酸蛋白酶的靶向酶切作用后,荧光染料分离,导致NIRF信号大幅放大。利用新型二维血管内NIRF导管在血管内检测NIR荧光信号,现在能够在体内以高分辨率、几何精确地检测炎症斑块中组织蛋白酶B的活性。与先前的一维光谱方法(6)不同,使用基于导管的二维NIRF成像对动脉粥样硬化进行体内分子成像,是一种新颖且有前景的工具,它利用富含巨噬细胞的斑块中增强的蛋白酶活性来检测血管炎症。(11,12)以下研究方案描述了使用血管内二维NIRF导管,利用斑块生物学的关键方面对斑块结构进行成像和表征。它是一个可转化的平台,当与包括血管造影和血管内超声(IVUS)在内的现有临床成像技术相结合时,提供了一种独特且新颖的集成多模态分子成像技术,可区分炎症性动脉粥样硬化斑块,并能够在人体大小的冠状动脉中检测血管内NIRF信号。