Suppr超能文献

动脉粥样硬化的血管内近红外荧光分子成像:实现对具有高生物学风险斑块的冠状动脉可视化。

Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques.

机构信息

Massachusetts General Hospital, Cardiovascular Research Center and Cardiology Division, Boston, Massachusetts 02114, USA.

出版信息

J Biomed Opt. 2010 Jan-Feb;15(1):011107. doi: 10.1117/1.3280282.

Abstract

New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

摘要

新的成像方法迫切需要在心肌梗死、中风和缺血性肢体发生之前识别出高风险的动脉粥样硬化病变。分子成像为可视化与心血管事件相关的高风险斑块的关键生物学特征提供了一种新方法。虽然在较大动脉血管(颈动脉、主动脉、髂动脉)的斑块临床分子成像方面已经取得了实质性进展,但仍然迫切需要开发针对人类冠状动脉高风险斑块的分子成像策略。我们介绍了用于活体检测冠状动脉大小的动脉中斑块炎症的基于近红外荧光导管的血管内策略的最新进展。特别是,讨论了新的血管内近红外荧光传感方法所依据的生物学、光传输、成像剂和工程原理。血管内近红外荧光导管似乎非常适合转化到心脏导管实验室,因此可能提供一种新的体内方法来检测高风险的冠状动脉斑块,并评估新的动脉粥样硬化生物标志物。

相似文献

3
Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.
5
Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis.
Circulation. 2008 Oct 28;118(18):1802-9. doi: 10.1161/CIRCULATIONAHA.108.785881. Epub 2008 Oct 13.
6
Everolimus-eluting stents stabilize plaque inflammation in vivo: assessment by intravascular fluorescence molecular imaging.
Eur Heart J Cardiovasc Imaging. 2017 May 1;18(5):510-518. doi: 10.1093/ehjci/jew228.
8
Intravascular near-infrared fluorescence molecular imaging of atherosclerosis.
Am J Nucl Med Mol Imaging. 2013 Apr 9;3(3):217-31. Print 2013.
9
Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques.
Sci Transl Med. 2011 May 25;3(84):84ra45. doi: 10.1126/scitranslmed.3001577.
10

引用本文的文献

1
Retinal Vascular Permeability in Diabetic Subjects without Retinopathy Compared with Mild Diabetic Retinopathy and Healthy Controls.
Ophthalmol Sci. 2024 Oct 26;5(2):100636. doi: 10.1016/j.xops.2024.100636. eCollection 2025 Mar-Apr.
2
Invasive coronary imaging of inflammation to further characterize high-risk lesions: what options do we have?
Front Cardiovasc Med. 2024 Feb 1;11:1352025. doi: 10.3389/fcvm.2024.1352025. eCollection 2024.
3
Review on Laser Technology in Intravascular Imaging and Treatment.
Aging Dis. 2022 Feb 1;13(1):246-266. doi: 10.14336/AD.2021.0711. eCollection 2022 Feb.
4
Cardiovascular optoacoustics: From mice to men - A review.
Photoacoustics. 2019 Mar 29;14:19-30. doi: 10.1016/j.pacs.2019.03.001. eCollection 2019 Jun.
6
In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
J Nucl Med. 2019 Sep;60(9):1308-1316. doi: 10.2967/jnumed.118.222471. Epub 2019 Feb 8.
8
Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma.
Photoacoustics. 2016 Aug 4;4(3):102-111. doi: 10.1016/j.pacs.2016.07.001. eCollection 2016 Sep.
9
Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion.
PLoS One. 2016 Aug 17;11(8):e0160522. doi: 10.1371/journal.pone.0160522. eCollection 2016.
10
Understanding Left Main Disease: Will the Right SYNTAX Help Us EXCEL in (PRE)COMBAT?
J Cardiovasc Transl Res. 2015 Jun;8(4):209-10. doi: 10.1007/s12265-015-9635-3. Epub 2015 Jun 2.

本文引用的文献

1
Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography.
Phys Med Biol. 2009 May 7;54(9):2769-77. doi: 10.1088/0031-9155/54/9/012. Epub 2009 Apr 15.
4
Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis.
Circulation. 2008 Oct 28;118(18):1802-9. doi: 10.1161/CIRCULATIONAHA.108.785881. Epub 2008 Oct 13.
6
Imaging of atherosclerotic cardiovascular disease.
Nature. 2008 Feb 21;451(7181):953-7. doi: 10.1038/nature06803.
7
Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach.
Arterioscler Thromb Vasc Biol. 2008 Mar;28(3):425-32. doi: 10.1161/ATVBAHA.107.149666. Epub 2008 Feb 7.
8
Multispectral photoacoustic imaging of fluorochromes in small animals.
Opt Lett. 2007 Oct 1;32(19):2891-3. doi: 10.1364/ol.32.002891.
9
Molecular imaging of cardiovascular disease.
Circulation. 2007 Aug 28;116(9):1052-61. doi: 10.1161/CIRCULATIONAHA.106.647164.
10
Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor.
Circulation. 2007 May 1;115(17):2292-8. doi: 10.1161/CIRCULATIONAHA.106.660340. Epub 2007 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验