Li Feng, Seillier-Moiseiwitsch Françoise, Korostyshevskiy Valeriy R
Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
Comput Stat Data Anal. 2011 Nov 1;55(11):3059-3072. doi: 10.1016/j.csda.2011.05.013.
A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images.
提出了一种用于二维聚丙烯酰胺凝胶电泳(2D PAGE)图像统计分析的全新综合程序,包括蛋白质区域定量、归一化和统计分析。蛋白质区域由从平均凝胶获得的主分水岭图定义。通过处理这些蛋白质区域,该方法绕过了当前二维聚丙烯酰胺凝胶电泳图像分析中的瓶颈:它不需要斑点匹配。通过局部分割在每个蛋白质区域中进行背景校正。提出二维局部加权平滑(LOESS)以在蛋白质区域定量后消除任何系统偏差。基于检测到的相关性将蛋白质分离为相互独立的集合,并对每个集合进行多变量分析以检测组效应。制定了一种基于此多变量方法并结合常用的Benjamini-Hochberg FDR程序的多重假设检验策略,并将其应用于二维聚丙烯酰胺凝胶电泳图像的差异分析。通过使用实际数据集展示了分析协议中的每个步骤。与商业软件包PDQuest和Dymension相比,使用模拟凝胶展示了所提出方法的有效性。我们还介绍了一种模拟凝胶图像的新程序。