The Scripps Research Institute Jupiter, FL, USA.
Front Neuroanat. 2011 Aug 8;5:49. doi: 10.3389/fnana.2011.00049. eCollection 2011.
Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation, and movement coordination. Activation of G protein-coupled receptors (GPCRs) by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes, and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named regulator of G protein signaling (RGS). RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.
三聚体 G 蛋白信号转导在调节纹状体神经元反应中起着至关重要的作用,这些神经元最终形成了基底神经节回路介导的核心行为,如奖励评估、习惯形成和运动协调。细胞外信号通过激活 G 蛋白偶联受体 (GPCR) 来激活三聚体 G 蛋白,促进 GTP 与它们的α亚基结合。G 蛋白通过影响该区域的关键效应蛋白的活性来发挥其作用,包括离子通道、第二信使酶和蛋白激酶。纹状体神经元表达数量惊人的 GPCR,其激活导致下游信号通路和细胞反应的参与,具有独特的特征,但具有共同的分子机制。过去十年的研究表明,G 蛋白信号转导的程度和持续时间受到一个名为 G 蛋白信号调节蛋白 (RGS) 的保守蛋白家族的控制。RGS 蛋白通过 G 蛋白的α亚基加速 GTP 水解,从而促进 GPCR 信号转导的失活。在这篇综述中,我们讨论了在理解 RGS 蛋白在控制纹状体 G 蛋白信号转导和提供信号传递的整合和选择性方面所取得的进展。我们回顾了关于 RGS 蛋白与纹状体信号通路其他成分之间形成大分子复合物的证据,以及它们的分子调节机制及其对纹状体中 GPCR 信号转导的影响,这些证据来自生化研究和涉及遗传小鼠模型的实验。特别强调了 RGS9-2,它是 RGS 家族的成员,在纹状体中高度富集,在药物成瘾和运动控制中发挥关键作用。