Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, 33431.
Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, 33431
J Neurosci. 2021 Nov 3;41(44):9065-9081. doi: 10.1523/JNEUROSCI.1211-21.2021. Epub 2021 Sep 20.
Stimulatory coupling of dopamine D (DR) and adenosine A receptors (AR) to adenylyl cyclase within the striatum is mediated through a specific Gαβγ heterotrimer to ultimately modulate motor behaviors. To dissect the individual roles of the Gαβγ heterotrimer in different populations of medium spiny neurons (MSNs), we produced and characterized conditional mouse models, in which the gene was deleted in either the DR- or AR/DR-expressing MSNs. We show that conditional loss of γ disrupts the cell type-specific assembly of the Gαβγ heterotrimer, thereby identifying its circumscribed roles acting downstream of either the DRs or ARs in coordinating motor behaviors, including responses to psychostimulants. We reveal that Gαβγ/cAMP signal in DR-MSNs does not impact spontaneous and amphetamine-induced locomotor behaviors in male and female mice, while its loss in AR/DR-MSNs results in a hyperlocomotor phenotype and enhanced locomotor response to amphetamine. Additionally, Gαβγ/cAMP signal in either DR- or AR/DR-expressing MSNs is not required for the activation of PKA signaling by amphetamine. Finally, we show that Gαβγ signaling acting downstream of DRs is selectively implicated in the acute locomotor-enhancing effects of morphine. Collectively, these results support the general notion that receptors use specific Gαβγ proteins to direct the fidelity of downstream signaling pathways and to elicit a diverse repertoire of cellular functions. Specifically, these findings highlight the critical role for the γ protein in determining the cellular level, and hence, the function of the Gαβγ heterotrimer in several disease states associated with dysfunctional striatal signaling. Dysfunction or imbalance of cAMP signaling in the striatum has been linked to several neurologic and neuropsychiatric disorders, including Parkinson's disease, dystonia, schizophrenia, and drug addiction. By genetically targeting the γ subunit in distinct striatal neuronal subpopulations in mice, we demonstrate that the formation and function of the Gαβγ heterotrimer, which represents the rate-limiting step for cAMP production in the striatum, is selectively disrupted. Furthermore, we reveal cell type-specific roles for Gαβγ-mediated cAMP production in the control of spontaneous locomotion as well as behavioral and molecular responses to psychostimulants. Our findings identify the γ protein as a novel therapeutic target for disease states associated with dysfunctional striatal cAMP signaling.
多巴胺 D (DR) 和腺苷 A 受体 (AR) 对纹状体中的腺苷酸环化酶的刺激偶联是通过特定的 Gαβγ 异三聚体介导的,最终调节运动行为。为了剖析 Gαβγ 异三聚体在不同群体的中间神经元 (MSNs) 中的作用,我们产生并表征了条件性小鼠模型,其中基因在 DR 或 AR/DR 表达的 MSNs 中被删除。我们表明,γ 的条件性缺失会破坏 Gαβγ 异三聚体的细胞类型特异性组装,从而确定其在协调运动行为方面的限定作用,包括对精神兴奋剂的反应。我们揭示了 DR-MSNs 中的 Gαβγ/cAMP 信号不影响雄性和雌性小鼠的自发性和安非他命诱导的运动行为,而其在 AR/DR-MSNs 中的缺失导致多动表型和增强对安非他命的运动反应。此外,无论是在 DR 还是 AR/DR 表达的 MSNs 中,Gαβγ/cAMP 信号都不需要安非他命激活 PKA 信号。最后,我们表明,DR 下游的 Gαβγ 信号选择性参与吗啡的急性运动增强作用。总之,这些结果支持这样的一般观点,即受体使用特定的 Gαβγ 蛋白来指导下游信号通路的保真度,并引发多种细胞功能。具体而言,这些发现强调了 γ 蛋白在确定 Gαβγ 异三聚体在与纹状体信号功能障碍相关的几种疾病状态中的细胞水平和功能方面的关键作用。纹状体中 cAMP 信号的功能障碍或失衡与几种神经和神经精神疾病有关,包括帕金森病、肌张力障碍、精神分裂症和药物成瘾。通过在小鼠中对不同纹状神经元亚群中的 γ 亚基进行基因靶向,我们证明了 Gαβγ 异三聚体的形成和功能受到选择性破坏,而 Gαβγ 异三聚体是纹状体中 cAMP 产生的限速步骤。此外,我们揭示了 Gαβγ 介导的 cAMP 产生在控制自发性运动以及对精神兴奋剂的行为和分子反应中的细胞类型特异性作用。我们的发现将 γ 蛋白确定为与纹状体 cAMP 信号功能障碍相关的疾病状态的新型治疗靶点。