Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany.
PLoS One. 2011;6(8):e22649. doi: 10.1371/journal.pone.0022649. Epub 2011 Aug 10.
Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover, perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming strategies.
造血是干细胞生物学的理想模型系统,具有先进的实验方法。核心转录因子相互作用的系统观点对于理解分化机制和动力学非常重要。在本文中,我们构建了一个布尔网络来模拟髓系分化,特别是从共同髓系祖细胞到巨核细胞、红细胞、粒细胞和单核细胞。通过解释造血文献并将实验证据转化为布尔规则,我们在所得的 11 因子调节网络上实现了二进制动力学。我们的网络包含有趣的功能模块和相互拮抗对的串联。我们模型的状态空间是一个分层的非循环图,典型地代表了髓系分化的原则。我们观察到我们模型的稳定状态与两个不同研究的微阵列表达谱之间非常吻合。此外,网络拓扑的扰动在计算机上正确地再现了报告的基因敲除表型。我们预测了以前未表征的调控相互作用和分化过程的改变,并提出了重新编程的策略。