Suppr超能文献

计算温泉中温度和氧化还原化学作用下蛋白质的相对化学稳定性。

Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

机构信息

School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America.

出版信息

PLoS One. 2011;6(8):e22782. doi: 10.1371/journal.pone.0022782. Epub 2011 Aug 11.

Abstract

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

摘要

由于地球化学观测和宏基因组测序的发展,揭示自然环境与微生物群落之间的化学和物理联系变得越来越可行。在黄石国家公园的野牛池温泉,从多个基于现场的测量中估计,流出通道中的水冷却与氧化势的增加有关。从宏基因组数据中推导出来的代表蛋白质组的序列,其蛋白质分子的平均氧化态也随着与温泉源的距离增加而增加。使用标准克分子热力学性质的氨基酸组加性,计算了形成模型中使用的选定蛋白质的反应的能量需求,并且通过改变温度、pH 值和氧化态(表示为溶解氢的活性)研究了蛋白质的相对化学稳定性。当计算包括一个随温度升高的氢活性函数时,并且该函数的值高于或更具还原性,与现场测量的溶解氧、硫化物和氧化还原电位一致时,发现蛋白质的相对稳定性与采样点的位置相吻合。这些发现意味着,通过代表蛋白质形成的整体化学反应的能量学,可以将蛋白质的氨基酸组成的空间模式与该温泉的环境条件联系起来,即使微生物细胞保持相当不同的内部条件。对于其他自然微生物生态系统,热力学计算的进一步应用是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f03f/3154912/87bee2a55dbe/pone.0022782.g001.jpg

相似文献

2
A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring.
PLoS One. 2013 Sep 2;8(9):e72395. doi: 10.1371/journal.pone.0072395. eCollection 2013.
3
4
Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.
Appl Environ Microbiol. 2008 Sep;74(18):5802-8. doi: 10.1128/AEM.00852-08. Epub 2008 Jul 18.
5
The Intersection of Geology, Geochemistry, and Microbiology in Continental Hydrothermal Systems.
Astrobiology. 2019 Dec;19(12):1505-1522. doi: 10.1089/ast.2018.2016. Epub 2019 Oct 8.
6
Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem.
PLoS One. 2012;7(6):e38108. doi: 10.1371/journal.pone.0038108. Epub 2012 Jun 4.
7
Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.).
J Sediment Res A Sediment Petrol Process. 2000 May;70(3):565-85. doi: 10.1306/2dc40929-0e47-11d7-8643000102c1865d.
9
Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park.
Environ Sci Technol. 2001 Aug 15;35(16):3302-9. doi: 10.1021/es0105562.
10
Changes in Carbon Oxidation State of Metagenomes Along Geochemical Redox Gradients.
Front Microbiol. 2019 Feb 11;10:120. doi: 10.3389/fmicb.2019.00120. eCollection 2019.

引用本文的文献

1
Bringing carbon to life via one-carbon metabolism.
Trends Biotechnol. 2025 Mar;43(3):572-585. doi: 10.1016/j.tibtech.2024.08.014. Epub 2024 Sep 20.
2
Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids.
Front Microbiol. 2023 Nov 10;14:1198786. doi: 10.3389/fmicb.2023.1198786. eCollection 2023.
4
Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients.
Front Microbiol. 2020 Feb 20;11:229. doi: 10.3389/fmicb.2020.00229. eCollection 2020.
5
Changes in Carbon Oxidation State of Metagenomes Along Geochemical Redox Gradients.
Front Microbiol. 2019 Feb 11;10:120. doi: 10.3389/fmicb.2019.00120. eCollection 2019.
6
Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds.
J Bacteriol. 2018 Apr 24;200(10). doi: 10.1128/JB.00757-17. Print 2018 May 15.
7
The energetics of anabolism in natural settings.
ISME J. 2016 Jun;10(6):1285-95. doi: 10.1038/ismej.2015.227. Epub 2016 Feb 9.
8
Average oxidation state of carbon in proteins.
J R Soc Interface. 2014 Nov 6;11(100):20131095. doi: 10.1098/rsif.2013.1095.
9
The metagenomic telescope.
PLoS One. 2014 Jul 23;9(7):e101605. doi: 10.1371/journal.pone.0101605. eCollection 2014.
10
A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring.
PLoS One. 2013 Sep 2;8(9):e72395. doi: 10.1371/journal.pone.0072395. eCollection 2013.

本文引用的文献

1
Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park.
Environ Microbiol. 2011 Aug;13(8):2216-31. doi: 10.1111/j.1462-2920.2011.02476.x. Epub 2011 Mar 31.
2
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.
Nat Chem. 2011 Feb;3(2):133-9. doi: 10.1038/nchem.948. Epub 2011 Jan 9.
3
Evolutionary systems biology of amino acid biosynthetic cost in yeast.
PLoS One. 2010 Aug 17;5(8):e11935. doi: 10.1371/journal.pone.0011935.
6
A simple, fast, and accurate method of phylogenomic inference.
Genome Biol. 2008 Oct 13;9(10):R151. doi: 10.1186/gb-2008-9-10-r151.
7
Calculation of the relative metastabilities of proteins using the CHNOSZ software package.
Geochem Trans. 2008 Oct 3;9:10. doi: 10.1186/1467-4866-9-10.
10
IMG/M: a data management and analysis system for metagenomes.
Nucleic Acids Res. 2008 Jan;36(Database issue):D534-8. doi: 10.1093/nar/gkm869. Epub 2007 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验