O'Keeffe Samantha, Garcia Lilly, Chen Yi, Law Richard C, Liu Chong, Park Junyoung O
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Trends Biotechnol. 2025 Mar;43(3):572-585. doi: 10.1016/j.tibtech.2024.08.014. Epub 2024 Sep 20.
One-carbon (C1) compounds found in greenhouse gases and industrial waste streams are underutilized carbon and energy sources. While various biological and chemical means exist for converting C1 substrates into multicarbon products, major challenges of C1 conversion lie in creating net value. Here, we review metabolic strategies to utilize carbon across oxidation states. Complications arise in biochemical C1-utilization approaches because of the need for cellular energy currency ATP. ATP supports cell maintenance and proliferation and drives thermodynamically challenging reactions by coupling them with ATP hydrolysis. Powering metabolism through substrate cofeeding and energy transduction from light and electricity improves ATP availability, relieves metabolic bottlenecks, and upcycles carbon. We present a bioenergetic, engineering, and technoeconomic outlook for bringing elements to life.
温室气体和工业废物流中发现的一碳(C1)化合物是未被充分利用的碳和能源。虽然存在各种将C1底物转化为多碳产物的生物和化学方法,但C1转化的主要挑战在于创造净价值。在这里,我们回顾了利用不同氧化态碳的代谢策略。由于细胞能量货币ATP的需求,生物化学C1利用方法中出现了复杂情况。ATP支持细胞维持和增殖,并通过将其与ATP水解偶联来驱动热力学上具有挑战性的反应。通过底物共进料以及光和电的能量转换为代谢提供动力,可以提高ATP的可用性,缓解代谢瓶颈,并使碳循环利用。我们提出了一个生物能量、工程和技术经济的前景,以实现这些要素的实际应用。