Dick Jeffrey M, Yu Miao, Tan Jingqiang, Lu Anhuai
Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha, China.
School of Geosciences and Info-Physics, Central South University, Changsha, China.
Front Microbiol. 2019 Feb 11;10:120. doi: 10.3389/fmicb.2019.00120. eCollection 2019.
There is widespread interest in how geochemistry affects the genomic makeup of microbial communities, but the possible impacts of oxidation-reduction (redox) conditions on the chemical composition of biomacromolecules remain largely unexplored. Here we document systematic changes in the carbon oxidation state, a metric derived from the chemical formulas of biomacromolecular sequences, using published metagenomic and metatranscriptomic datasets from 18 studies representing different marine and terrestrial environments. We find that the carbon oxidation states of DNA, as well as proteins inferred from coding sequences, follow geochemical redox gradients associated with mixing and cooling of hot spring fluids in Yellowstone National Park (USA) and submarine hydrothermal fluids. Thermodynamic calculations provide independent predictions for the environmental shaping of the gene and protein composition of microbial communities in these systems. On the other hand, the carbon oxidation state of DNA is negatively correlated with oxygen concentration in marine oxygen minimum zones. In this case, a thermodynamic model is not viable, but the low carbon oxidation state of DNA near the ocean surface reflects a low GC content, which can be attributed to genome reduction in organisms adapted to low-nutrient conditions. We also present evidence for a depth-dependent increase of oxidation state at the species level, which might be associated with alteration of DNA through horizontal gene transfer and/or selective degradation of relatively reduced (AT-rich) extracellular DNA by heterotrophic bacteria. Sediments exhibit even more complex behavior, where carbon oxidation state minimizes near the sulfate-methane transition zone and rises again at depth; markedly higher oxidation states are also associated with older freshwater-dominated sediments in the Baltic Sea that are enriched in iron oxides and have low organic carbon. This geobiochemical study of carbon oxidation state reveals a new aspect of environmental information in metagenomic sequences, and provides a reference frame for future studies that may use ancient DNA sequences as a paleoredox indicator.
地球化学如何影响微生物群落的基因组组成已引起广泛关注,但氧化还原(redox)条件对生物大分子化学成分的潜在影响在很大程度上仍未得到探索。在这里,我们利用来自18项研究的已发表宏基因组和宏转录组数据集,记录了碳氧化态的系统变化,碳氧化态是一种从生物大分子序列的化学式推导出来的指标,这些研究代表了不同的海洋和陆地环境。我们发现,DNA以及从编码序列推断出的蛋白质的碳氧化态遵循与美国黄石国家公园温泉流体和海底热液流体的混合和冷却相关的地球化学氧化还原梯度。热力学计算为这些系统中微生物群落的基因和蛋白质组成的环境塑造提供了独立的预测。另一方面,在海洋氧含量最低区域,DNA的碳氧化态与氧浓度呈负相关。在这种情况下,热力学模型不可行,但海洋表面附近DNA的低碳氧化态反映了低GC含量,这可归因于适应低营养条件的生物体的基因组缩减。我们还提供了物种水平上氧化态随深度增加的证据,这可能与通过水平基因转移改变DNA和/或异养细菌对相对还原(富含AT)的细胞外DNA的选择性降解有关。沉积物表现出更为复杂的行为,在硫酸盐 - 甲烷过渡带附近碳氧化态最小化,在深度处又再次上升;在波罗的海富含氧化铁且有机碳含量低的以淡水为主的较老沉积物中也存在明显更高的氧化态。这项关于碳氧化态的地球生物化学研究揭示了宏基因组序列中环境信息的一个新方面,并为未来可能将古代DNA序列用作古氧化还原指标的研究提供了参考框架。