Suppr超能文献

KCNE1β亚基对长QT综合征相关的KCNQ1 A341V突变体的部分恢复作用

Partial restoration of the long QT syndrome associated KCNQ1 A341V mutant by the KCNE1 β-subunit.

作者信息

Mikuni Ikuomi, Torres Carlos G, Bienengraeber Martin W, Kwok Wai-Meng

机构信息

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

Biochim Biophys Acta. 2011 Dec;1810(12):1285-93. doi: 10.1016/j.bbagen.2011.07.018. Epub 2011 Aug 10.

Abstract

BACKGROUND

The A341V mutation in the pore-forming KCNQ1 subunit of the slowly activating delayed-rectifier potassium current (IKs) underlies a common form of the long QT syndrome, and is associated with an unusually severe phenotype. However, there is controversy regarding the underlying mechanism responsible for the clinically observed phenotype. We investigated the biophysical characteristics of A341V in a cardiac environment by utilizing a cardiac cell line, and in particular the impact of the KCNE1 β-subunit.

METHODS

Whole-cell current were recorded from transiently transfected HL-1 cells, a cardiac cell line. Mutant KCNQ1 and KCNE1 were constructed by site-directed mutagenesis.

RESULTS

The A341V mutant resulted in a non-functional channel when expressed alone. When co-expressed with wild type KCNE1, A341V produced a slowly activating current, with a smaller current density, slower rates of activation, and a depolarized shift in its activation curve compared to the wild type KCNQ1+KCNE1. Confocal microscopy confirmed the surface expression of GFP-tagged A341V, suggesting a functionally defective protein. A T58A mutation in KCNE1 abolished functional restoration of A341V. Under heterozygous conditions, the expression of A341V+KCNQ1+KCNE1 reduced but did not abolish the electrophysiological changes observed in A341V+KCNE1. A dominant negative effect of A341V was also observed. Action potential simulations revealed that the A341V mutation is arrhythmogenic.

CONCLUSIONS

The KCNE1 β-subunit partially rescued the non-functional A341V mutant, with electrophysiological properties distinct from the wild type IKs.

GENERAL SIGNIFICANCE

The severity of the A341V phenotype may be due to a combination of a significant suppression of the IKs with altered biophysical characteristics.

摘要

背景

缓慢激活延迟整流钾电流(IKs)的孔形成KCNQ1亚基中的A341V突变是长QT综合征的一种常见形式的基础,并且与异常严重的表型相关。然而,关于导致临床观察到的表型的潜在机制存在争议。我们通过利用一种心脏细胞系,研究了心脏环境中A341V的生物物理特性,特别是KCNE1β亚基的影响。

方法

从瞬时转染的HL-1细胞(一种心脏细胞系)记录全细胞电流。通过定点诱变构建突变型KCNQ1和KCNE1。

结果

单独表达时,A341V突变体导致通道无功能。与野生型KCNE1共表达时,A341V产生缓慢激活的电流,与野生型KCNQ1+KCNE1相比,电流密度较小,激活速率较慢,其激活曲线发生去极化偏移。共聚焦显微镜证实了绿色荧光蛋白标记的A341V的表面表达,表明存在功能缺陷的蛋白质。KCNE1中的T58A突变消除了A341V的功能恢复。在杂合条件下,A341V+KCNQ1+KCNE1的表达减少但并未消除在A341V+KCNE1中观察到的电生理变化。还观察到A341V的显性负效应。动作电位模拟显示A341V突变具有致心律失常性。

结论

KCNE1β亚基部分挽救了无功能的A341V突变体,其电生理特性与野生型IKs不同。

一般意义

A341V表型的严重程度可能是由于IKs的显著抑制与生物物理特性改变共同作用的结果。

相似文献

1
Partial restoration of the long QT syndrome associated KCNQ1 A341V mutant by the KCNE1 β-subunit.
Biochim Biophys Acta. 2011 Dec;1810(12):1285-93. doi: 10.1016/j.bbagen.2011.07.018. Epub 2011 Aug 10.
2
Enhanced effects of isoflurane on the long QT syndrome 1-associated A341V mutant.
Anesthesiology. 2015 Apr;122(4):806-20. doi: 10.1097/ALN.0000000000000583.
3
Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1.
Circ Res. 2012 Jan 20;110(2):211-9. doi: 10.1161/CIRCRESAHA.111.249482. Epub 2011 Nov 17.
4
Dysfunctional potassium channel subunit interaction as a novel mechanism of long QT syndrome.
Heart Rhythm. 2013 May;10(5):728-37. doi: 10.1016/j.hrthm.2012.12.033. Epub 2013 Jan 2.
5
LQT1 mutations in KCNQ1 C-terminus assembly domain suppress IKs using different mechanisms.
Cardiovasc Res. 2014 Dec 1;104(3):501-11. doi: 10.1093/cvr/cvu231. Epub 2014 Oct 24.
6
Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation.
Int J Mol Sci. 2020 Dec 11;21(24):9440. doi: 10.3390/ijms21249440.
7
Slow delayed rectifier potassium current blockade contributes importantly to drug-induced long QT syndrome.
Circ Arrhythm Electrophysiol. 2013 Oct;6(5):1002-9. doi: 10.1161/CIRCEP.113.000239. Epub 2013 Aug 31.
8
Insulin suppresses IKs (KCNQ1/KCNE1) currents, which require β-subunit KCNE1.
Pflugers Arch. 2014 May;466(5):937-46. doi: 10.1007/s00424-013-1352-7. Epub 2013 Sep 26.
9
A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome.
Cardiovasc Res. 2015 Sep 1;107(4):613-23. doi: 10.1093/cvr/cvv196. Epub 2015 Jul 13.

引用本文的文献

1
Targeting the I Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants.
Circ Res. 2024 Sep 13;135(7):722-738. doi: 10.1161/CIRCRESAHA.124.325009. Epub 2024 Aug 21.
2
4
Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation.
Elife. 2020 Oct 23;9:e57680. doi: 10.7554/eLife.57680.
5
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183148. doi: 10.1016/j.bbamem.2019.183148. Epub 2019 Dec 9.
7
Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.
Biophys J. 2016 Jan 5;110(1):14-25. doi: 10.1016/j.bpj.2015.11.023.
8
Enhanced effects of isoflurane on the long QT syndrome 1-associated A341V mutant.
Anesthesiology. 2015 Apr;122(4):806-20. doi: 10.1097/ALN.0000000000000583.
9
Long QT syndrome in South Africa: the results of comprehensive genetic screening.
Cardiovasc J Afr. 2013 Jul;24(6):231-7. doi: 10.5830/CVJA-2013-032.

本文引用的文献

1
Identification of a protein-protein interaction between KCNE1 and the activation gate machinery of KCNQ1.
J Gen Physiol. 2010 Jun;135(6):607-18. doi: 10.1085/jgp.200910386. Epub 2010 May 17.
2
Direct observation of individual KCNQ1 potassium channels reveals their distinctive diffusive behavior.
J Biol Chem. 2010 Feb 5;285(6):3664-3675. doi: 10.1074/jbc.M109.039974. Epub 2009 Nov 23.
3
NOS1AP is a genetic modifier of the long-QT syndrome.
Circulation. 2009 Oct 27;120(17):1657-63. doi: 10.1161/CIRCULATIONAHA.109.879643. Epub 2009 Oct 12.
4
CELLULAR OPEN RESOURCE (COR): current status and future directions.
Philos Trans A Math Phys Eng Sci. 2009 May 28;367(1895):1885-905. doi: 10.1098/rsta.2008.0289.
5
Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning.
Br J Pharmacol. 2009 Feb;156(3):432-43. doi: 10.1111/j.1476-5381.2008.00026.x. Epub 2009 Feb 16.
6
Location of KCNE1 relative to KCNQ1 in the I(KS) potassium channel by disulfide cross-linking of substituted cysteines.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):743-8. doi: 10.1073/pnas.0811897106. Epub 2009 Jan 8.
7
The QT syndromes: long and short.
Lancet. 2008 Aug 30;372(9640):750-63. doi: 10.1016/S0140-6736(08)61307-0.
9
Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome.
J Am Coll Cardiol. 2008 Mar 4;51(9):920-9. doi: 10.1016/j.jacc.2007.09.069.
10
Clinical practice. Long-QT syndrome.
N Engl J Med. 2008 Jan 10;358(2):169-76. doi: 10.1056/NEJMcp0706513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验