The Centre de recherche Université Laval Robert-Giffard (CRULRG), Laval University, Québec, Canada.
Prog Brain Res. 2011;193:121-44. doi: 10.1016/B978-0-444-53839-0.00009-0.
Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma.
在整个生命过程中,丘脑皮质(TC)网络在激活状态(清醒或快速眼动睡眠)和主导慢波睡眠的慢振荡状态之间交替。在这些不同的状态下,神经元放电的模式是不同的。我提出,由于相对规则的放电,激活状态预设了一些稳定的突触可塑性,而慢波睡眠的静默期有助于从这种稳定的突触可塑性中释放出来。在这方面,我讨论了警觉状态如何影响短期、中期和长期突触可塑性、内在神经元可塑性以及同型性可塑性。最后,我认为慢振荡是皮质网络的固有特性,大脑的同型性机制被调整为利用所有形式的可塑性使皮质网络达到慢振荡状态。然而,这种同型性平衡的长期和深刻的转变可能导致阵发性过度兴奋和癫痫发作,如脑外伤的情况。