Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
Prog Brain Res. 2011;193:201-18. doi: 10.1016/B978-0-444-53839-0.00013-2.
Slow waves are the most prominent electroencephalographic feature of non-rapid eye movement (NREM) sleep. During NREM sleep, cortical neurons oscillate approximately once every second between a depolarized upstate, when cortical neurons are actively firing, and a hyperpolarized downstate, when cortical neurons are virtually silent (Destexhe et al., 1999; Steriade et al., 1993a, 2001). Intracellular recordings indicate that the origins of the slow oscillation are cortical and that corticocortical connections are necessary for their synchronization (Amzica and Steriade, 1995; Steriade et al., 1993b; Timofeev and Steriade, 1996; Timofeev et al., 2000). The currents produced by the near-synchronous slow oscillation of large populations of neurons appear on the scalp as electroencephalogram (EEG) slow waves (Amzica and Steriade, 1997). Despite this cellular understanding, questions remain about the role of specific cortical structures in individual slow waves. Early EEG studies of slow waves in humans were limited by the small number of derivations employed and by the difficulty of relating scalp potentials to underlying brain activity (Brazier, 1949; Roth et al., 1956). Functional neuroimaging methods offer exceptional spatial resolution, but lack the temporal resolution to track individual slow waves (Dang-Vu et al., 2008; Maquet, 2000). Intracranial recordings in patient populations are limited by the availability of medically necessary electrode placements and can be confounded by pathology and medications (Cash et al., 2009; Nir et al., 2011; Wenneberg 2010). Source modeling of high-density EEG recordings offers a unique opportunity for neuroimaging sleep slow waves. So far, the results have challenged several of the influential topographic observations about slow waves that had persisted since the original EEG recordings of sleep. These recent analyses revealed that individual slow waves are idiosyncratic cortical events and that the negative peak of the EEG slow wave often involves cortical structures not necessarily apparent from the scalp, like the inferior frontal gyrus, anterior cingulate, posterior cingulate, and precuneus (Murphy et al., 2009). In addition, not only do slow waves travel (Massimini et al., 2004), but they often do so preferentially through the areas comprising the major connectional backbone of the human cortex (Hagmann et al., 2008). In this chapter, we will review the cellular, intracranial recording, and neuroimaging results concerning EEG slow waves. We will also confront a long held belief about peripherally evoked slow waves, also known as K-complexes, namely that they are modality independent and do not involve cortical sensory pathways. The analysis included here is the first to directly compare K-complexes evoked with three different stimulation modalities within the same subject on the same night using high-density EEG.
慢波是非快速眼动 (NREM) 睡眠中最突出的脑电图特征。在 NREM 睡眠期间,皮质神经元在去极化的上状态和超极化的下状态之间大约每秒振荡一次,在上状态时皮质神经元活跃放电,在下状态时皮质神经元几乎处于沉默状态(Destexhe 等人,1999 年;Steriade 等人,1993a 年,2001 年)。细胞内记录表明,慢波的起源是皮质的,皮质皮质连接对于它们的同步是必要的(Amzica 和 Steriade,1995 年;Steriade 等人,1993b 年;Timofeev 和 Steriade,1996 年;Timofeev 等人,2000 年)。大量神经元的近同步慢振荡产生的电流在头皮上表现为脑电图 (EEG) 慢波(Amzica 和 Steriade,1997 年)。尽管有了这种细胞理解,但关于特定皮质结构在单个慢波中的作用仍存在疑问。早期人类慢波的脑电图研究受到所采用的衍生数量有限以及难以将头皮电位与潜在脑活动相关联的限制(Brazier,1949 年;Roth 等人,1956 年)。功能神经影像学方法提供了卓越的空间分辨率,但缺乏跟踪单个慢波的时间分辨率(Dang-Vu 等人,2008 年;Maquet,2000 年)。患者人群中的颅内记录受到医疗必需电极放置的可用性的限制,并且可能受到病理学和药物的干扰(Cash 等人,2009 年;Nir 等人,2011 年;Wenneberg 2010 年)。高密度脑电图记录的源建模为睡眠慢波的神经影像学提供了独特的机会。到目前为止,这些结果挑战了自睡眠脑电图记录以来一直存在的几个关于慢波的有影响力的地形观察。这些最近的分析表明,单个慢波是特有的皮质事件,脑电图慢波的负峰通常涉及不一定从头皮上明显的皮质结构,如额下回、前扣带、后扣带和楔前叶(Murphy 等人,2009 年)。此外,慢波不仅会传播(Massimini 等人,2004 年),而且它们通常优先通过构成人类皮质主要连接骨干的区域传播(Hagmann 等人,2008 年)。在本章中,我们将回顾有关 EEG 慢波的细胞、颅内记录和神经影像学结果。我们还将面对一个长期以来关于外周诱发慢波的信念,也称为 K 复合体,即它们是模态独立的,不涉及皮质感觉通路。这里的分析是第一个在同一晚上同一受试者中使用高密度 EEG 直接比较使用三种不同刺激模式诱发的 K 复合体的分析。