Suppr超能文献

自发和外周诱发慢波下皮质源的时间动态。

Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves.

机构信息

Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Prog Brain Res. 2011;193:201-18. doi: 10.1016/B978-0-444-53839-0.00013-2.

Abstract

Slow waves are the most prominent electroencephalographic feature of non-rapid eye movement (NREM) sleep. During NREM sleep, cortical neurons oscillate approximately once every second between a depolarized upstate, when cortical neurons are actively firing, and a hyperpolarized downstate, when cortical neurons are virtually silent (Destexhe et al., 1999; Steriade et al., 1993a, 2001). Intracellular recordings indicate that the origins of the slow oscillation are cortical and that corticocortical connections are necessary for their synchronization (Amzica and Steriade, 1995; Steriade et al., 1993b; Timofeev and Steriade, 1996; Timofeev et al., 2000). The currents produced by the near-synchronous slow oscillation of large populations of neurons appear on the scalp as electroencephalogram (EEG) slow waves (Amzica and Steriade, 1997). Despite this cellular understanding, questions remain about the role of specific cortical structures in individual slow waves. Early EEG studies of slow waves in humans were limited by the small number of derivations employed and by the difficulty of relating scalp potentials to underlying brain activity (Brazier, 1949; Roth et al., 1956). Functional neuroimaging methods offer exceptional spatial resolution, but lack the temporal resolution to track individual slow waves (Dang-Vu et al., 2008; Maquet, 2000). Intracranial recordings in patient populations are limited by the availability of medically necessary electrode placements and can be confounded by pathology and medications (Cash et al., 2009; Nir et al., 2011; Wenneberg 2010). Source modeling of high-density EEG recordings offers a unique opportunity for neuroimaging sleep slow waves. So far, the results have challenged several of the influential topographic observations about slow waves that had persisted since the original EEG recordings of sleep. These recent analyses revealed that individual slow waves are idiosyncratic cortical events and that the negative peak of the EEG slow wave often involves cortical structures not necessarily apparent from the scalp, like the inferior frontal gyrus, anterior cingulate, posterior cingulate, and precuneus (Murphy et al., 2009). In addition, not only do slow waves travel (Massimini et al., 2004), but they often do so preferentially through the areas comprising the major connectional backbone of the human cortex (Hagmann et al., 2008). In this chapter, we will review the cellular, intracranial recording, and neuroimaging results concerning EEG slow waves. We will also confront a long held belief about peripherally evoked slow waves, also known as K-complexes, namely that they are modality independent and do not involve cortical sensory pathways. The analysis included here is the first to directly compare K-complexes evoked with three different stimulation modalities within the same subject on the same night using high-density EEG.

摘要

慢波是非快速眼动 (NREM) 睡眠中最突出的脑电图特征。在 NREM 睡眠期间,皮质神经元在去极化的上状态和超极化的下状态之间大约每秒振荡一次,在上状态时皮质神经元活跃放电,在下状态时皮质神经元几乎处于沉默状态(Destexhe 等人,1999 年;Steriade 等人,1993a 年,2001 年)。细胞内记录表明,慢波的起源是皮质的,皮质皮质连接对于它们的同步是必要的(Amzica 和 Steriade,1995 年;Steriade 等人,1993b 年;Timofeev 和 Steriade,1996 年;Timofeev 等人,2000 年)。大量神经元的近同步慢振荡产生的电流在头皮上表现为脑电图 (EEG) 慢波(Amzica 和 Steriade,1997 年)。尽管有了这种细胞理解,但关于特定皮质结构在单个慢波中的作用仍存在疑问。早期人类慢波的脑电图研究受到所采用的衍生数量有限以及难以将头皮电位与潜在脑活动相关联的限制(Brazier,1949 年;Roth 等人,1956 年)。功能神经影像学方法提供了卓越的空间分辨率,但缺乏跟踪单个慢波的时间分辨率(Dang-Vu 等人,2008 年;Maquet,2000 年)。患者人群中的颅内记录受到医疗必需电极放置的可用性的限制,并且可能受到病理学和药物的干扰(Cash 等人,2009 年;Nir 等人,2011 年;Wenneberg 2010 年)。高密度脑电图记录的源建模为睡眠慢波的神经影像学提供了独特的机会。到目前为止,这些结果挑战了自睡眠脑电图记录以来一直存在的几个关于慢波的有影响力的地形观察。这些最近的分析表明,单个慢波是特有的皮质事件,脑电图慢波的负峰通常涉及不一定从头皮上明显的皮质结构,如额下回、前扣带、后扣带和楔前叶(Murphy 等人,2009 年)。此外,慢波不仅会传播(Massimini 等人,2004 年),而且它们通常优先通过构成人类皮质主要连接骨干的区域传播(Hagmann 等人,2008 年)。在本章中,我们将回顾有关 EEG 慢波的细胞、颅内记录和神经影像学结果。我们还将面对一个长期以来关于外周诱发慢波的信念,也称为 K 复合体,即它们是模态独立的,不涉及皮质感觉通路。这里的分析是第一个在同一晚上同一受试者中使用高密度 EEG 直接比较使用三种不同刺激模式诱发的 K 复合体的分析。

相似文献

1
Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves.
Prog Brain Res. 2011;193:201-18. doi: 10.1016/B978-0-444-53839-0.00013-2.
2
Source modeling sleep slow waves.
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1608-13. doi: 10.1073/pnas.0807933106. Epub 2009 Jan 22.
3
Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
J Neurosci. 1995 Jan;15(1 Pt 2):604-22. doi: 10.1523/JNEUROSCI.15-01-00604.1995.
5
Regional Delta Waves In Human Rapid Eye Movement Sleep.
J Neurosci. 2019 Apr 3;39(14):2686-2697. doi: 10.1523/JNEUROSCI.2298-18.2019. Epub 2019 Feb 8.
6
Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
J Neurosci. 2017 Sep 20;37(38):9132-9148. doi: 10.1523/JNEUROSCI.1303-17.2017. Epub 2017 Aug 16.
7
Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep.
Cereb Cortex. 2012 Feb;22(2):426-35. doi: 10.1093/cercor/bhr121. Epub 2011 Jun 13.
8
The cortical topography of local sleep.
Curr Top Med Chem. 2011;11(19):2438-46. doi: 10.2174/156802611797470303.
10
Increased cortical involvement and synchronization during CAP A1 slow waves.
Brain Struct Funct. 2018 Nov;223(8):3531-3542. doi: 10.1007/s00429-018-1703-4. Epub 2018 Jun 27.

引用本文的文献

1
Affective information modulates slow-wave- and arousal-like responses during NREM sleep.
Commun Biol. 2025 Jul 17;8(1):1060. doi: 10.1038/s42003-025-08480-3.
2
Neurophysiological effects of targeting sleep spindles with closed-loop auditory stimulation.
Sleep Adv. 2025 Jul 7;6(2):zpaf007. doi: 10.1093/sleepadvances/zpaf007. eCollection 2025 Apr.
3
Sleep-dependent memory consolidation in young and aged brains.
Aging Brain. 2024 Sep 12;6:100124. doi: 10.1016/j.nbas.2024.100124. eCollection 2024.
4
Episodic long-term memory formation during slow-wave sleep.
Elife. 2024 Apr 25;12:RP89601. doi: 10.7554/eLife.89601.
5
Slow-wave modulation analysis during states of unconsciousness using the novel tau-modulation method.
J Neural Eng. 2023 Jul 21;20(4):046013. doi: 10.1088/1741-2552/ace5db.
6
Theoretical considerations and supporting evidence for the primary role of source geometry on field potential amplitude and spatial extent.
Front Cell Neurosci. 2023 Mar 30;17:1129097. doi: 10.3389/fncel.2023.1129097. eCollection 2023.
7
Lateralized tactile stimulation during NREM sleep globally increases both slow and fast frequency activities.
Psychophysiology. 2023 Mar;60(3):e14191. doi: 10.1111/psyp.14191. Epub 2022 Sep 25.
8
The human thalamus orchestrates neocortical oscillations during NREM sleep.
Nat Commun. 2022 Sep 5;13(1):5231. doi: 10.1038/s41467-022-32840-w.

本文引用的文献

1
Intracranial cortical localization of the human K-complex.
Clin Neurophysiol. 2010 Aug;121(8):1176-86. doi: 10.1016/j.clinph.2009.12.039. Epub 2010 Mar 24.
3
Origin of active states in local neocortical networks during slow sleep oscillation.
Cereb Cortex. 2010 Nov;20(11):2660-74. doi: 10.1093/cercor/bhq009. Epub 2010 Mar 3.
4
The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
Nat Neurosci. 2010 Jan;13(1):9-17. doi: 10.1038/nn.2445. Epub 2009 Dec 6.
5
Cortical firing and sleep homeostasis.
Neuron. 2009 Sep 24;63(6):865-78. doi: 10.1016/j.neuron.2009.08.024.
6
Acoustic oddball during NREM sleep: a combined EEG/fMRI study.
PLoS One. 2009 Aug 25;4(8):e6749. doi: 10.1371/journal.pone.0006749.
7
The human K-complex represents an isolated cortical down-state.
Science. 2009 May 22;324(5930):1084-7. doi: 10.1126/science.1169626.
8
Source modeling sleep slow waves.
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1608-13. doi: 10.1073/pnas.0807933106. Epub 2009 Jan 22.
9
Sensory responses during sleep in primate primary and secondary auditory cortex.
J Neurosci. 2008 Dec 31;28(53):14467-80. doi: 10.1523/JNEUROSCI.3086-08.2008.
10
Spontaneous neural activity during human slow wave sleep.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15160-5. doi: 10.1073/pnas.0801819105. Epub 2008 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验