Suppr超能文献

自动预测面部特征判断:外观与结构模型。

Automatic prediction of facial trait judgments: appearance vs. structural models.

机构信息

Computer Vision Center, Edifici O, Campus Bellaterra, Universidad Autonoma de Barcelona, Barcelona, Spain.

出版信息

PLoS One. 2011;6(8):e23323. doi: 10.1371/journal.pone.0023323. Epub 2011 Aug 17.

Abstract

Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

摘要

评估他人的个性特征在人际关系中起着至关重要的作用,这也是心理学和交互计算机系统等多个领域研究的重点。在心理学中,面部感知已被认为是该评估系统的关键组成部分。多项研究表明,观察者使用面部信息来推断个性特征。交互计算机系统试图利用这些发现,并将其应用于增加交互的自然性和提高交互计算机系统的性能。在这里,我们通过实验测试了是否可以使用面部的全部外观信息对面部特征判断(例如支配力)进行自动预测,以及是否可以仅使用其结构的简化表示来实现这一点。我们评估了两种独立的方法:一种是使用面部外观信息的整体表示模型,另一种是由面部显著点之间的关系构建的结构模型。我们应用最先进的机器学习方法来:a)从训练数据中得出面部特征判断模型,以及 b)预测任何面部的面部特征值。此外,我们还解决了面部特征感知中是否存在特定的结构关系的问题。在一组标记数据(9 种不同的特征评估)和分类规则(4 种规则)上的实验结果表明:a)整体和结构方法都可以学习对面部特征感知的预测;b)通过对面部外观的某些类型的整体描述,可以获得面部特征判断的最可靠预测;c)对于某些特征,例如吸引力和外向性,存在特定结构特征与社会感知之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0793/3157350/d06e98b2681f/pone.0023323.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验