Suppr超能文献

美国放射学院头部体模弥散张量成像质量保证协议。

A quality assurance protocol for diffusion tensor imaging using the head phantom from American College of Radiology.

机构信息

Department of Radiology, Children's Medical Center of Dallas, Dallas, Texas 75235, USA.

出版信息

Med Phys. 2011 Jul;38(7):4415-21. doi: 10.1118/1.3595111.

Abstract

PURPOSE

To propose a quality assurance procedure for routine clinical diffusion tensor imaging (DTI) using the widely available American College of Radiology (ACR) head phantom.

METHODS

Analysis was performed on the data acquired at 1.5 and 3.0 T on whole body clinical MRI scanners using the ACR phantom and included the following: (1) the signal-to-noise ratio (SNR) at the center and periphery of the phantom, (2) image distortion by EPI readout relative to spin echo imaging, (3) distortion of high-b images relative to the b= 0 image caused by diffusion encoding, and (4) determination of fractional anisotropy (FA) and mean diffusivity (MD) measured with region-of-interest (ROI) and pixel-based approaches. Reproducibility of the measurements was assessed by five repetitions of data acquisition on each scanner.

RESULTS

The SNR at the phantom center was approximately half of that near the periphery at both 1.5 and 3 T. The image distortion by the EPI readout was up to 7 mm at 1.5 T and 10 mm at 3 T. The typical distortion caused by eddy currents from diffusion encoding was on the order of 0.5 mm. The difference between ROI-based and pixel-based MD quantification was 1.4% at 1.5 T and 0.3% at 3 T. The ROI-based MD values were in close agreement (within 2%) with the reference values. The ROI-based FA values were approximately a factor of 10 smaller than pixel-based values and less than 0.01. The measurement reproducibility was sufficient for quality assurance (QA) purposes.

CONCLUSIONS

This QA approach is simple to perform and evaluates key aspects of the scanner performance for DTI data acquisition using a widely available phantom.

摘要

目的

提出一种使用广泛可用的美国放射学院(ACR)头部体模对常规临床扩散张量成像(DTI)进行质量保证的程序。

方法

在 1.5T 和 3.0T 全身临床 MRI 扫描仪上使用 ACR 体模对采集的数据进行分析,包括以下内容:(1)体模中心和周边的信噪比(SNR),(2)EPI 读出相对于自旋回波成像的图像失真,(3)扩散编码引起的高 b 图像相对于 b=0 图像的失真,以及(4)使用感兴趣区(ROI)和像素的方法测量各向异性分数(FA)和平均扩散系数(MD)。通过在每台扫描仪上重复五次数据采集来评估测量的可重复性。

结果

在 1.5T 和 3T 时,体模中心的 SNR 约为周边的一半。EPI 读出引起的图像失真在 1.5T 时最大可达 7mm,在 3T 时最大可达 10mm。扩散编码引起的典型涡流失真约为 0.5mm。基于 ROI 和基于像素的 MD 定量之间的差异在 1.5T 时为 1.4%,在 3T 时为 0.3%。基于 ROI 的 MD 值与参考值非常吻合(在 2%以内)。基于 ROI 的 FA 值约为基于像素值的十分之一,小于 0.01。测量的可重复性足以满足质量保证(QA)的目的。

结论

这种 QA 方法简单易行,使用广泛可用的体模评估了 DTI 数据采集的扫描仪性能的关键方面。

相似文献

3
A novel DTI-QA tool: Automated metric extraction exploiting the sphericity of an agar filled phantom.
Magn Reson Imaging. 2018 Feb;46:28-39. doi: 10.1016/j.mri.2017.07.027. Epub 2017 Oct 17.
4
Quality assurance multicenter comparison of different MR scanners for quantitative diffusion-weighted imaging.
J Magn Reson Imaging. 2016 Jan;43(1):213-9. doi: 10.1002/jmri.24956. Epub 2015 May 26.
5
Improvement of Reliability of Diffusion Tensor Metrics in Thigh Skeletal Muscles.
Eur J Radiol. 2018 May;102:55-60. doi: 10.1016/j.ejrad.2018.02.034. Epub 2018 Mar 6.
6
The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort.
Neuroimage. 2016 Jan 15;125:903-919. doi: 10.1016/j.neuroimage.2015.10.068. Epub 2015 Oct 28.
7
A comparison of readout segmented EPI and interleaved EPI in high-resolution diffusion weighted imaging.
Magn Reson Imaging. 2018 Apr;47:39-47. doi: 10.1016/j.mri.2017.11.011. Epub 2017 Nov 23.
8
Liquid crystal phantom for validation of microscopic diffusion anisotropy measurements on clinical MRI systems.
Magn Reson Med. 2018 Mar;79(3):1817-1828. doi: 10.1002/mrm.26814. Epub 2017 Jul 7.
9
The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assurance protocol for MR neuroimaging data.
Neuroimage. 2018 May 15;172:450-460. doi: 10.1016/j.neuroimage.2018.01.079. Epub 2018 Feb 1.

引用本文的文献

2
Phantom Construction and Equipment Configurations for Characterizing Electrical Properties Using MRI.
Adv Exp Med Biol. 2022;1380:83-110. doi: 10.1007/978-3-031-03873-0_4.
7
A fiber coherence index for quality control of B-table orientation in diffusion MRI scans.
Magn Reson Imaging. 2019 May;58:82-89. doi: 10.1016/j.mri.2019.01.018. Epub 2019 Jan 22.
9
A novel DTI-QA tool: Automated metric extraction exploiting the sphericity of an agar filled phantom.
Magn Reson Imaging. 2018 Feb;46:28-39. doi: 10.1016/j.mri.2017.07.027. Epub 2017 Oct 17.
10
Early detection of neonatal hypoxic-ischemic white matter injury: an MR diffusion tensor imaging study.
Neuroreport. 2017 Sep 6;28(13):845-855. doi: 10.1097/WNR.0000000000000844.

本文引用的文献

1
Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study.
Neuroimage. 2011 Jun 1;56(3):1398-411. doi: 10.1016/j.neuroimage.2011.02.010. Epub 2011 Feb 18.
2
Ground truth hardware phantoms for validation of diffusion-weighted MRI applications.
J Magn Reson Imaging. 2010 Aug;32(2):482-8. doi: 10.1002/jmri.22243.
4
Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):321-9. doi: 10.1007/978-3-540-85990-1_39.
5
Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping.
Magn Reson Imaging. 2008 Nov;26(9):1294-302. doi: 10.1016/j.mri.2008.03.005. Epub 2008 May 21.
6
Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics.
Magn Reson Imaging. 2008 Jul;26(6):754-62. doi: 10.1016/j.mri.2008.02.001. Epub 2008 Apr 28.
8
Diffusion tensor imaging of the brain.
Neurotherapeutics. 2007 Jul;4(3):316-29. doi: 10.1016/j.nurt.2007.05.011.
9
Clinical applications of diffusion tensor imaging and tractography in children.
Pediatr Radiol. 2007 Aug;37(8):769-80. doi: 10.1007/s00247-007-0524-z. Epub 2007 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验